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Article History:  Abstract. The main tasks of the Training Air Base concern the practical training of cadets in piloting tech-
niques as well as maintaining and improving the piloting skills of the instructors. It is essential to maintain 
the infrastructure of the airfield and the Base as a whole ready for operation. This allows for fulfilling the fun-
damental mission of such military units, which is to provide effective operations for the defence of the state.
Therefore, measures to support and improve the operation of such military facilities are extremely important 
and also became the genesis of this article. It analyses and evaluates the number of flights carried out over 
seven years (2016–2022) at the studied training base using mathematical modelling, allowing to assess the 
variability of the studied series. The phase trends method was used for this purpose, preceded by a seasonal-
ity study. It allowed the identification of periods in which the number of flights performed varies significantly. 
Such knowledge enables better regulation of the airport’s operation, adjustment of activities to the needs, 
and the determination of further directions for airport development and the justification of potential invest-
ments. An additional value of the article is the presentation of a mathematical modelling method specifically 
designed for seasonal time series, along with their diagnostics. It also provides an opportunity for other insti-
tutions to carry out tasks while upholding the highest standards.
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1. Introduction 

The ability to perform flights depends on numerous fac-
tors, with safety being a key element of air operations. This 
is pointed out by numerous authors of studies in the field 
of aviation, emphasizing the necessity of implementing 
all solutions that can enhance flight safety and mitigate 
risks (Bauranov & Rakas, 2021). Conducting analyses that 
enable flight management in a way that minimizes risks 
before they lead to incidents or accidents is particularly 
important (Ellis et al., 2021). The Federal Aviation Admin-
istration also identifies maintaining safety as an Overarch-
ing Principle (Federal Aviation Administration, 2020). Me-
teorological conditions and proper adaptation of tasks to 
occurring atmospheric phenomena, such as fog, cumulo-
nimbus clouds, hail, rain, and snowfall significantly impact 
flight safety. This is emphasized in numerous publications, 
where authors point out the importance of avoiding areas 
with turbulence and those affected by adverse weather 
conditions for flight. Another equally significant factor in-
fluencing flight operations is the state of maintenance of 
aviation equipment in a broad sense (aircraft, navigational 
aids, radars) and elements of airport infrastructure. In mili-
tary aviation, the number of available aircraft is crucial, 

determining both the quantity and types of air operations 
conducted. Maintaining airplanes and helicopters in prop-
er technical condition reduces the risk of failures, which 
not only disrupt the tasks of the damaged aircraft but can 
also affect other ongoing flights. Technological advance-
ments enable the use of increasingly advanced navigation-
al methods, enhancing the ability to fly in conditions with 
limited visibility or within clouds. Modern systems facilitate 
safe landing at airfields, with continuous monitoring by air 
traffic services, thereby enabling an increasing number of 
users to fly. 

Therefore, many factors influence the execution of 
aviation tasks, making the examination of this variability 
over time a crucial issue for the analysis and assessment 
of airport functioning. It is, however, a challenging task, 
with many authors considering it a major challenge (Ka-
navos et al., 2021). Mathematical methods are well-suited 
for this purpose, enabling the identification of time series 
and the construction of a flight model. This model can 
be instrumental in providing crucial information describ-
ing the airport’s operations and development. The avia-
tion industry employs mathematical modelling at various 
levels, encompassing both operational management and 
strategic planning (Banerjee et al., 2020). This facilitates 
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sustainable airport development planning and the formu-
lation of strategies for the sustainable development of air-
ports (Wang & Song, 2020). Sustainable airport develop-
ment with performance evaluation forecasts: A case study 
of 12 Asian airports. Journal of Air Transport Management, 
89, 101925. By analysing the number of flight operations 
over the years, it becomes possible to monitor the de-
crease or increase in traffic at the airport. Consequently, 
it is feasible to determine whether investments in airport 
infrastructure, modern equipment, and an increased num-
ber of ground aviation staff are justified. This staff includes 
personnel responsible for maintaining cleanliness of run-
ways and taxiways, aircraft maintenance technicians, as 
well as ground navigation aids and air traffic controllers. 
Moreover, assessing air operations on a monthly basis may 
encourage efforts to distribute them more evenly through-
out the year. 

Flight analysis is a prevalent topic in world literature, 
with a particular focus on flight safety, constituting the 
primary theme of most publications. Authors delve into 
the analysis of human factor (Kelly & Efthymiou, 2019; 
Amalberti & Wioland, 2020), the potential for detecting 
flight anomalies (Sheridan et al., 2020; Wei et al., 2023; Ko-
sacki & Tomczyk, 2022), diagnosing faults (Su et al., 2023), 
and identifying defects in both manned and unmanned 
aircraft (Chen et al., 2020; Czyż et al., 2023; Leško et al., 
2023). Many publications also address ecological concerns 
and the minimization of negative impacts on the natural 
environment, even during the aircraft design stage (Pa-
rolin et al., 2021). In this context, decarbonisation of air 
transport (Klöwer et al., 2020; Chen et al., 2020; Andrych-
Zalewska et al., 2023) and the reduction of fuel consump-
tion during flight (Soltani et al., 2020; Ziółkowski et al., 
2022) are extensively analysed. Selected publications focus 
on the assessment of aircraft delays (Yu et al., 2019; Gui 
et al., 2019). Authors emphasize the imbalance between 
demand and air traffic capacity, particularly concerning the 
largest airports (Lambelho et al., 2020). During Covid-19, 
numerous publications focused on the interaction of the 
pandemic with air transport, particularly in relation to the 
spread of the disease (Pavli et al., 2020) and flight risks 
(Khatib et al., 2020). A separate strand in the literature 
involves research on assessing customer satisfaction and 
contentment (Kumar & Zymbler, 2019; Han et al., 2019), 
primarily aimed at building the strength of the brand and 
customer attachment to specific choices. However, de-
spite the multitude of studies on flight analysis and their 
evaluation in various aspects, they concern primarily civil 
and commercial flights (Yu et al., 2019; Mínguez Barroso 
& Muñoz-Marrón, 2023). In the military context, there are 
fewer such studies. The primary focus of the analyses is 
on the study of military pilots and their reactions to par-
ticipating in combat flights (Villafaina et al., 2021) and the 
associated risks (Shaw et al., 2021). 

A limited number of articles addressing the specificity 
of military flights, especially those conducted as part of 
pilot training, have opted to present these considerations. 
Their objective was to analyse and evaluate training flights 

conducted in the largest centre in Poland, which trains 
candidates for military pilots. The substantial variability of 
observations in the time series prompted the selection of a 
mathematical model enabling such an analysis. Therefore, 
an additional advantage of this publication is the presen-
tation of a method dedicated to observations character-
ized by significant seasonality (Borucka, 2023). The use of 
the phase trends method allowed for the identification of 
a time series taking into account this feature of the series. 

2. Characteristics of the research subject 
and phase trends method

The study covered flights performed in the years 2016–
2022 at the airfield in Dęblin (Poland), operated by the 
41st Training Air Base. The main task of the base is aviation 
training for cadets of the Eaglet School, using M-346 “Bie-
lik” aircraft as well as SW-4 “Puszczyk” and Mi-2 helicop-
ters. The flight activity at the Dęblin airfield is additionally 
influenced by the operations of the Military University of 
Aviation, utilizing various aircraft types, such as Diamond 
20, Diamond 40, Diamond 42 planes as well as Guimbal 
Cabri G2 and Robinson R44 helicopters. Furthermore, the 
Eaglets Aero Club at the Dęblin airport operates various 
types of aircraft, such as Cessna 150, Cessna 172, and Dia-
mond 20. 

Let ( ),  , PΩ   be a probabilistic space, R – the set of 
real numbers and N – the set of natural numbers. The evo-
lution over time of any object with properties described 
by a set of one-dimensional random variables ( )t TX t ∈ , 
defined on the same probabilistic space ( ,  ,PΩ  ), with 
values ( )x t  z depending on the physical time t is called 
a stochastic process (Liu & Xiao, 2022; Kozłowski et al., 
2023). The implementation of a stochastic process, which 
for t = 1, 2, 3, … is a sequence of { }t t Nx ∈  subsequent ob-
servations 1,   2,   3   x x x … is called a time series, i.e. for each 
t N∈  a random variable :tx RΩ → .

The analysis of time series of aircraft flights aims to 
check whether this phenomenon follows identifiable regu-
larities. This involves isolating the systematic component 
and random noise, i.e. the so-called interference. The de-
velopment of the phenomenon over time is most often 
influenced by (Borucka & Sobecki, 2023):

 ■ trend (long-term, systematic changes), 
 ■ seasonal fluctuations (regular deviations from the de-
velopment trend associated with repeated periods),

 ■ cyclical fluctuations (related to the business cycle)
 ■ random fluctuations (irregular changes).
Identification of the above factors enables the selec-

tion of an appropriate model describing the phenomenon 
under study.

If seasonal fluctuations occur in the time series { }t t Nx ∈ , 
the method used to identify such a component is the anal-
ysis of phase trends (Lyu et al., 2021). This involves the 
separation and identification of m-subseries separated 
from the original time series that correspond to different 
phases of periodic fluctuations. The least squares method 
is used for this purpose.
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If the time series 1{ }t t Nx ≤ ≤  has m phases and N Tm=  
it can be divided into m subseries 1

1{ }k k Tx ≤ ≤ , 2
1{ }k k Tx ≤ ≤ , …, 

1{ }m
k k Tx ≤ ≤  where (Kozłowski, 2015):

( ){ }1
1 1 1 2 1 1 1{ } ,  ,  ,  , k k T m m T mx x x x x≤ ≤ + + − += … ; (1)

( ){ }2
1 2 2 2 2 1 2{ } ,  ,  ,  , k k T m m T mx x x x x≤ ≤ + + − += … ; (2)

{ }1 2 3{ } ,  ,  ,  , m
k k T m m m Tmx x x x x≤ ≤ = … . (3)

For each of the subseries defined in this way, for 
1 k T≤ ≤  it is possible to determine phase trend models 
of the form (Kozłowski, 2015):

( )1 1
1 1, k kx f k= Θ + ε ; (4)

( )2 2
2 2, k kx f k= Θ + ε ; (5)

( ), m m
k m m kx f k= Θ + ε . (6)

Deterministic functions ( )1, if t Θ  for 1,2, ,i m= …  de-
termine the internal dynamics of the subseries 1{ }i

k k Tx ≤ ≤  
while 1

m
k k T≤ ≤ε  constitute uncorrelated random variables 

with a normal distribution ( )20,  iN σ . For such a model, 
the values of the parameters, 1 2,  ,  ,  mΘ Θ … Θ  are estimated 
using the least squares method (Zhang & Zhao, 2023).

Following identification, the time series { }t t Nx ∈  has the 
form (Kozłowski, 2015):
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 (7)
where t

m
 
 
 

 denotes the integer part of dividing t by m, 

and mod(t,m) denotes the remainder of dividing t by m.

3. Identification of model parameters

The analysed time series of flights is presented in Figure 1. 
It can be seen that flights are subject to systematic chang-
es based on the month in which they take place. 

Strong monthly seasonality is confirmed by Figure 2.
The chart above shows that the fewest flight opera-

tions occur out in winter months, namely December and 
January. This is attributed, among other factors, to the 41st 
Training Air Base not conducting training for cadets of the 
Military University of Aviation during this period, as nearly 
entire annual flying plan is completed, and aircraft are 
serviced. From mid-February, a gradual increase in flight 
operations is observed due to the resumption of instruc-

tors’ currency and shift in weather conditions to more fa-
vourable ones, such as lengthening days and less frequent 
snowfall, the latter significantly limiting flight operations. 
At the turn of March and April, cadet internships begin, 
leading to a gradual increase in the number of flight op-
erations, reaching a maximum in August. Subsequently, 
the number of operations performed decreases again, es-
pecially between October and December, as evidenced by 
the end of the cadet apprenticeship period and deterio-
rating weather conditions in autumn and winter, including 
fog and precipitation, along with shortening days. Con-
sidering the number of flight operations performed in the 
41st Training Air Base over the years, a gradual increase is 
observed, resulting from the growing number of available 

Figure 1. The studied time series – training flights in 2016–2022

Figure 2. Periodicity of the tested series 
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aircraft and the annual rise in recruitment at the Military 
University of Aviation in the faculty of piloting. 

The observed seasonality led to dividing the analysed 
time series  

1 84{ }k tx ≤ ≤  into 12 sub-sequences correspond-
ing to individual months, representing different phases in 
the analysed series. The results of such fitting are pre-
sented in Figure 3.

Figure 3 shows that a linear trend was determined for 
each month (sub-series), therefore the following was as-
sumed:
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For 1 7k≤ ≤ , 

whereas 1 7
i
k k≤ ≤ε  for 1,  ,1  2i = …  represent sequences of 

uncorrelated random variables with a normal distribution 

( )20,  iN σ .
Using the least squares method, the equation pa-

rameters were determined for each month according to 
Equation (8), which, along with the estimation error, are 
presented in Table 1.

Table 1. Model coefficients estimated using LSM

Month/phase number a0 a1 SE

1 310.86 42.79 50.57
2 1363.43 18.39 14.13
3 1172.29 194.43 111.67
4 2265.29 296.71 80.07
5 2506.29 187.32 112.02
6 1385.71 331.32 184.52
7 1356.00 443.61 148.95
8 2560.86 378.32 210.57
9 2047.00 314.43 127.89
10 757.00 511.57 166.12
11 555.86 236.68 151.10
12 212.29 37.57 74.31

Following the identification of parameters, the time 
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where:

( )1 2~  0, 50.57 t Nε , ( )2 2~  0,1  4.13 t Nε , ( )3 2~  0,1  11.67 t Nε , 

( )4 2~  0, 80.07 t Nε , ( )5 2~  0,1  12.02 t Nε , ( )6 2~  0,1  84.52 t Nε , 

Figure 3. Fitting phase trends to individual subseries 
(months)
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( )7 2~  0,1  48.95 t Nε , ( )8 2~  0, 210.57 t Nε , ( )9 2~  0,1  27.89 t Nε , 

( )10 2~  0,1  66.12 t Nε , ( )11 2~  0,1  51.10 t Nε , ( )12 2~   0,  74.31 t Nε .

4. Discussion of results

To evaluate the proposed phase trends model, the coef-
ficient of determination was calculated for each identified 
phase. The results are presented in Table 2.

This allows for the conclusion that the model fit is 
exceptionally well. For each sub-series, the calculated co-
efficient of determination is remarkably high. This is also 
confirmed by Figure 3, where time series (represented by 
the black line) depicting successive phases in the studied 
series  

1 84{ }k tx ≤ ≤  are shown, while the red lines represent 
trend lines determined for each sub-series. The trend lines 
for most sub-series practically overlap with the empirical 
data, indicating a very good fit. Sub-series identification 
is more evident in Figure 4 and Figure 5, which present 
sample graphs for phases 4 and 7. For April (phase 4), the 
model, in consecutive years 8, 9,1  0,k = … , corresponding 
to periods 100,1  12,1  24,  t = … takes the form (Figure 4):

4
12 4 2265.29 269.71k kx k+ = + + ε ,

where { }4
8
 k k≥

ε  is a sequence of random variables with a 

normal distribution ( )20, 80.07 N .
On the other hand, for July (phase 7), in consecu-

tive years 8, 9,1  0,k = … , corresponding to periods 
103,1  15,1  27,t = …  the model takes the form (Figure 5):

7
12 7 1356 443.61k kx k+ = + + ε ,

where { }7
8k k≥

ε  is a sequence of random variables 

with normal distribution ( )20,1  48.95 N .
Thus, the presented model can be considered reliable 

and applicable to the studied structures, not only for the 
identification of time series of flights but also for their 
assessment and forecasting of future values. Additionally, 

the computed values of the model coefficients allow for 
the evaluation of the number of flights and their changes 
over time for individual months. A clear increase is evi-
dent in each of them. For example, for the months ana-
lysed above, i.e., April and July, the increase is over 296.71 
flights for phase 4 and over 443.61 flights for phase 7, 
respectively. Based on the model identification for each 
month, it is possible to estimate not only the expected 
values of the number of flights in subsequent periods but 
also confidence intervals regarding the number of flights 
for each month. 

The application of the model proposed in the arti-
cle will, therefore, enable a better assessment of flights 
performed in each month, aligning available human and 
material resources with the tasks performed, and improv-
ing training schedule management. The proposed model 
can provide excellent support for airport processes, being 
simple to interpret and apply. Its versatility also allows for 
utilization in other systems where activities – operations 
are characterized by clear seasonality. 

5. Conclusions

Flight analysis and knowledge about their seasonality, as 
well as information about the upward trend, are important 
from the point of view of both the training of cadets and 
the introduction of solutions allowing for a safe increase 
in the number of operations at the Dęblin airfield. The 
information contained in the analysis can be used by staff 
responsible for planning flights to – if possible – optimally 
distribute them throughout the year. Moreover, the results 
of the analysis indicate the need for continuous develop-
ment of the airfield, both in terms of equipment and avail-
able infrastructure, as well as an increase in the number of 
aviation personnel and their appropriate training. 

The proposed model well reflected the seasonality di-
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Figure 5. Trend model fit for phase 7 (July)
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As part of further research, models will be constructed to 
also analyse other factors affecting the number of mili-
tary flights, taking into account the impact of, for exam-
ple, meteorological conditions, economic factors and the 
geopolitical situation. In this article, in accordance with the 
authors’ assumption, only the time factor was analysed. 
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