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Abstract. Neural network-based methods such as deep neural networks show great efficiency for a wide range of applications. In 
this paper, a deep learning-based hybrid approach to forecast the yearly revenue passenger kilometers time series of Australia’s 
major domestic airlines is proposed. The essence of the approach is to use a resilient error backpropagation algorithm with 
dropout for “tuning” the polynomial neural network, obtained as a result of a multi-layered GMDH algorithm. The article com-
pares the performance of the suggested algorithm on the time series with other popular forecasting methods: deep belief network, 
multi-layered GMDH algorithm, Box-Jenkins method and the ANFIS model. The minimum reached MAE of the proposed algo-
rithm was approximately 25% lower than the minimum MAE of the next best method – GMDH, thus indicating that the practical 
application of the algorithm can give good results compared with other well-known methods.

Keywords: forecasting, neural networks, time series, deep learning, hybrid algorithm, group method of data handling.

Introduction

Predicting market demand for air transportation is of 
great significance for airlines, as well as for investors, 
since the accuracy of such a prediction has a big impact 
on investment efficiency (Blinova, 2007). Therefore, airline 
transportation demand metrics, like Revenue Passenger 
Kilometers (RPK), are one of the key factors that are con-
sidered when preparing an airline’s annual operating plan, 
performing fleet planning and developing the route net-
work (Ba-Fail, Abed, & Jasimuddin, 2000; Doganis, 2009). 
Besides, examining and estimating an airline’s transporta-
tion demand may likewise help an airline mitigate its risk 
through an objective assessment of the demand side of 
the airline business (Abed, Ba-Fail, & Jasimuddin, 2001; 
Ba-Fail et al., 2000).

In recent years, very good results for a wide range of 
applications have been shown by neural network-based 
methods such as deep neural networks, including the fol-
lowing applications: image recognition (Girshick, Dona-
hue, Darrell, & Malik, 2013), speech recognition (Bahdan-
au, Chorowski, Serdyuk, Brakel, & Bengio, 2016), machine 
translation (Bahdanau, Cho, & Bengio, 2014), reinforce-
ment learning (Mnih et  al., 2013) and many others. In 

essence, many of these applications require some kind of 
function approximation to be performed in order to build 
a corresponding model, which should indicate the general 
suitability of deep learning-based methods as a function 
approximation mechanism. We propose a deep learning-
based hybrid approach to forecast the yearly revenue pas-
senger kilometers (RPK) time series of Australia’s major 
domestic airlines, which are publicly available (Australian 
Domestic Airline Activity-time series, n.d.).

1. Formulation of the problem

Suppose that a sequence of values 1[ ,..., ]Tnx x x=


 was ob-
served at successive moments of time 1[ ,..., ]Tnt t t=



 with 
a given constant period 1 , 2,...,i it t T i n−− = = . Then the 
forecasting problem (Figure 1) that is considered in this 
paper can be formulated as: by using the available data 
(Figure 1, A), construct a model of the process being fore-
cast, which takes k  successive values 1[ ,..., ]Ti k ix x− +  as 
inputs and gives the prediction for value i hx +  at some 
future point in time i ht + (Figure 1, B).
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Figure 1. Graphical representation of the forecasting problem: 
A – known values, B – future values

2. Review of existing methods

Currently, main approaches to forecasting problems can 
be divided into 2 groups:

 – “Classical” methods like linear regression, or Box-
Jenkins method (Box & Jenkin, 1970), etc.

 – Methods based on artificial intelligence  – group 
method of data handling (Stepashko, 1988) methods 
family, artificial neural networks-based methods, 
genetic algorithms, fuzzy logic-based methods and 
different hybrid algorithms, like adaptive network-
based fuzzy inference system.

Let us shortly review the main methods from both 
groups.

The Box-Jenkins method is an ARIMA (Asteriou & 
Hall, 2011) model-based method that uses an iterative 
three-stage modelling approach, as described below:

1. Model identification and model selection: checking 
the stationarity of variables, checking the seasonal-
ity in the dependent series, plotting the autocorre-
lation and partial autocorrelation functions of the 
dependent time series to decide which autoregres-
sive or moving average component should be used 
in the model;

2. Parameter estimation using computation algo-
rithms to arrive at coefficients that best fit the se-
lected ARIMA model. The most common methods 
use maximum likelihood estimation or non-linear 
least-squares estimation;

3. Model checking by testing, to determine whether 
the estimated model conforms to the specifications 
of a stationary univariate process. In particular, the 
residuals should be independent of each other and 
constant in mean and variance over time. Plotting 
the mean and variance of residuals over time and 
performing a Ljung–Box test or plotting autocorre-
lation and partial autocorrelation of the residuals are 
helpful to identify misspecification. If the estimation 
is inadequate, we have to return to step one and at-
tempt to build a better model.

Group method of data handling (GMDH) is a set of 
forecasting algorithms that are based on a selection of the 
best models from the set of trained simple models and 
the subsequent construction of more complex models us-
ing the selected ones. The accuracy of the forecast is im-
proved with the increase in the complexity of the models. 
The selection criterion is based on the performance of the 
models on the validation set, while the model parameters 
are determined using the training set. The simplest mod-

els, also called the basis functions, are usually of the fol-
lowing form:

1 0
1 1 1

( ,..., ) ...
n n n

n i i ij i j
i i j

F x x a a x a x x
= = =

= + + +∑ ∑∑ .

Nevertheless, it is possible to use any other type of 
basis functions, including harmonic series, exponential 
series, etc.

GMDH-like algorithms show good forecasting accu-
racy for real-life processes, mainly due to their use of an 
external criterion (i.e. the models are selected using data 
that were not used for their training).

Artificial neural networks (Rosenblatt, 1958) are a 
system of connected and interacting artificial neurons – 
simplified mathematical models of biological neural cells. 
ANN cannot be programmed in the usual sense of the 
word: they are trained. During the training, the neural 
network is able to detect the complex relationship between 
the input and output data and to perform a generalization. 
The ability of neural networks to carry out the prediction 
follows directly from their ability to generalize and find 
hidden relationships between input and output data. After 
training, the network is able to predict the future value of 
a specific sequence based on a number of previous values 
and/or any current factors.

Nowadays deep learning and deep neural networks are 
the most promising direction in the study of ANN. This 
trend began to develop in connection with the problem of 
effective learning of neural networks with a large number 
of layers (it is worth noting that the recurrent networks can 
also be represented as feedforward networks with a very 
large number of layers): the standard backpropagation al-
gorithm gave poor results for these networks – the gradient 
of the error either faded on the backward pass by layers, 
leading to the weights of the first layers almost being not 
trained at all, or grew indefinitely, leading to a divergence 
of the learning process. In (Hinton, 1989), a solution to this 
problem was proposed for the first time: the network was 
constructed layer by layer, and the initial weights between 
the two layers were found using a restricted Boltzmann 
machine algorithm. Afterwards, the resulting network was 
additionally tuned using a standard backpropagation algo-
rithm, since the initial weights already provided a “reason-
able” network behaviour, the problem with fading or over-
increasing gradients disappeared. Thus, we can distinguish 
two main stages of deep neural networks’ training:

1. “Preliminary” deep network training (pre-training), 
the essence of which is to add new layers one by 
one and during which the weights between two lay-
ers are trained separately  – most often using the 
restricted Boltzmann machine training algorithm.

2. “Tuning” of the obtained network structure using the 
error back propagation algorithm (or some modifica-
tion of it), sometimes with the use of regularization 
methods (currently, a dropout algorithm (Hinton, 
Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 
2012) is the most popular regularization method for 
the training of deep networks).
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In the area of time series forecasting, deep belief net-
works (DBN) (Lee, Grosse, Ranganath, & Ng, 2009) are 
showing the most promising results. A deep belief network 
(DBN) is a deep neural network composed of multiple lay-
ers of hidden units, with connections between the layers 
but not between units within each layer. When trained on 
a set of examples without supervision, a DBN can learn to 
probabilistically reconstruct its inputs. The layers then act 
as feature detectors. After this learning step, a DBN can be 
further trained with supervision to perform classification 
or regression. A few articles describing the application of 
DBNs to time series forecasting are (Kuremoto, Kimura, 
Kobayashi, & Obayashi, 2014), (Qiu, Zhang, Ren, Sugan-
than, & Amaratunga, 2014), (Chao, Shen, & Zhao, 2011), 
and others.

Adaptive network-based fuzzy inference system (Jang, 
1993) is a hybrid algorithm that combines both ANN 
and fuzzy inference systems (Fang, 2012; Liu, C., Liu, X., 
Huang, Zhao, 2008) and aims at utilizing the advantages 
of both approaches by using prior information in a form 
of fuzzy rules and capturing hidden dependencies by per-
forming parameter “learning” (Jang, Sun, & Mizutani, 
1997; Xiao et al., 2014; Yetilmezsoy, Fingas, & Fieldhouse, 
2011). In other words, during learning, the ANFIS tries to 
find optimal parameters of some fuzzy inference system. 
“Optimal” here is defined by some error criterion that 
usually measures how accurate a given model is on a test 
data, hence, the parameters that minimize a given error 
criterion are optimal (Goyal, Bharti, Quilty, Adamowski, 
& Pandey, 2014). Usually, in the ANFIS, membership 
function parameters and fuzzy rule parameters are opti-
mized during learning.

3. Literature review and algorithm description

In (Schmidhuber, 2015), it is mentioned that despite the 
relative newness of deep learning methods, GMDH was 
the first method allowing to effectively train polynomial 
deep neural networks. Indeed, a multilayered GMDH 
algorithm builds a deep polynomial neural network, see 
(Kondo, 1998; Srinivasan, 2008) for an example. The net-
work weights are trained in a “greedy” manner by tun-
ing the weights of each new layer of neurons separately, 
with all previous weights being fixed. This results in a very 
computationally efficient procedure for training deep net-
works. However, since only a portion of the entire net-
work’s weights is trained at each iteration, the training 
may stop without finding globally optimal weights. Ac-
tually, it may stop without even finding locally optimal 
weights, since an appropriate error function is never mini-
mized explicitly.

Later, another method for training multilayered 
networks was introduced  – well known nowadays as 
backpropagation (LeCun, Bottou, Orr, & Müller, 1998). 
Backpropagation allowed calculating the true gradient of 
error function with respect to every weight of a mul-
tilayer neural network, thus one could use any suitable 
first-order gradient descent method to perform weights 

optimization and find local optima. Theoretically, this 
should “solve” the problem of training multilayer neu-
ral networks, but, in practice, results were not very good 
for deep networks, see (Bengio, De Mori, Flammia, & 
Kompe, 1992), (Bengio, Simard, & Frasconi, 1994) for 
an example. The core issue with training deep networks 
using backpropagation was soon found: vanishing/ex-
ploding gradients problem (Hochreiter, Bengio, Frasco-
ni, & Schmidhuber, 2001). Essentially, according to the 
backpropagation method, an error function’s gradient for 
the weights in “early” layers (layers, that are closer to 
inputs) is a sum of the products of terms involving an 
error function’s gradients for the weights in all following 
layers. When there are many layers that is an intrinsically 
unstable situation – if many gradients in deeper layers 
are smaller than 1 in an absolute value, their product 
will be close to 0, thus leading to a “vanishing” gradient 
for the early layers; and vice versa – if many gradients in 
deeper layers are bigger than 1 in an absolute value, their 
product will increase exponentially, leading to “explod-
ing” gradients in early layers.

One approach to these issues was first suggested 
in (Hinton, 2009). The main idea of the approach is to 
first perform “pre-training” of each layer of the network 
by separately using the Restricted Boltzmann Machines 
(RBM) training algorithm. Then, the obtained network 
weights are used as initial weights in the backpropagation 
algorithm. Though not very well-founded theoretically, in 
practice, such “pre-training” does indeed help in reduc-
ing the vanishing/exploding gradient problem effect. In 
(Erhan et al., 2010), it is suggested that pre-training over-
comes the challenges of deep learning by introducing a 
useful prior to the fine-tuning training procedure.

Another problem common for all “complex” forecast-
ing models, including deep neural networks, is overfit-
ting –complex models can potentially “memorize” training 
sets instead of finding actual dependencies, and perform 
badly on new data it has not seen before. Different tech-
niques have been suggested to overcome this issue: regu-
larization (Krogh & Hertz, 1992), early training stopping 
(Prechelt, 1998), validation set checking, etc. In (Hinton 
et  al., 2012), a new “dropout” approach tailored specifi-
cally to deep neural networks was suggested. According 
to the approach, one should randomly perform tempo-
rary deletion of the network’s neurons during training it-
erations. This can be viewed as a crude approximation to 
performing Bayesian model averaging (BMA) (Hoeting, 
Madigan, Raftery, & Volinsky, 1998), which is another way 
of dealing with overfitting. The problem with BMA is that 
is does not scale well to very large network sizes, so it can-
not be applied to deep neural networks practically, while 
dropout scales extremely well.

The essence of the proposed approach is to view a 
multi-layered GMDH algorithm as a pre-training stage 
of fitting a deep polynomial neural network and then to 
apply a resilient error backpropagation algorithm (rprop) 
(Riedmiller & Braun, 1992) with dropout to perform fine-
tuning.
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The proposed algorithm for constructing and training 
deep polynomial neural networks consists of the follow-
ing stages.

1. Transforming original time series { }nx :
 – calculating the finite difference time  series: 

1i i id x x+= − ;
 – normalizing difference time series to zero mean and 
unit standard deviation: i

i
d

d
−µ

=
σ

;
 – preparing the input samples matrix X  and the 
outputs vector y  using the time series embedding 
method with some embedding dimension k:

1 1

1

,
k k

N k N N

d d d
X y

d d d

+

− −

   
   = =   

     





   



.

2. Pre-training stage using  a multi-layered 
GMDH  algorithm to obtain the original  struc-
ture and weights of the polynomial neural network:

 – the entire sample set is randomly divided into train-
ing and validation sets; usually 70% of all samples go 
into the training set and 30% of the remaining sam-
ples go into the validation set, but one can choose 
another ratio – the training set size to validation set 
size ratio is one of the hyperparameters of this ap-
proach;

 –
2
kC  models of the form:

2 2
1 1 2 2( , )i j i i j j ij i j i i j jf x x a x a x a x x a x a x= + + + + ,

 – are trained using a linear regression on the training 
set;

 – for each model f , its error is calculated on the vali-
dation set:

2

( , ) ( , )
( ) ( ( ) )

v vx y X y
E f f x y

∈
= −∑

 



;

 – ls  models with the lowest error are selected, where 
l  is the layer number in a multi-layered GMDH al-
gorithm (for the simplicity of implementation, ls k=  
is often used);

 – outputs of these models for each sample of the train-
ing set form a new matrix of inputs (1)X  for the next 
layer of models:

1 1 1
(1)

1

( ) ( )

( ) ( )

l

l

s

N k s N k

f d f d

X

f d f d− −

 
 
 =
 
  

 



  

 



,

 – where { }1 1, , ,
T

p p p p kd d d d+ + −=


 , and ( )m pf d


 
means that only the elements under the indices i  
and j  which correspond to  the model mf  will be 
taken from vector pd



;
 – if the minimum error on a validation set of all mod-
els in the current layer is less than the minimum er-
ror of all models from the previous layer (or  if  it is 
the first layer), a  transition to the  following  layer is 

performed (starting  from  stage  2.2),  otherwise  the 
algorithm stops and the best model of the previous 
series is selected as the “final” one; the criterion for 
the GMDH algorithm stop can be stated as:

1

1,
min ( ) min ( ),

l lf F f F

l
E f E f

−∈ ∈

>
 ≥


 – where l  is the number of the current layer; lF  – set 
of all models of the current layer. As the output of 
this stage, the polynomial  neural  network with a 
structure shown in Figure 2 below is obtained:

Figure 2. Polynomial neural network

3. Tuning stage, where the weights of the resulting net-
work are trained with the use of the resilient error 
backpropagation algorithm:

 – for each pair <input vector, output value> from the 
training set, two so-called passes are performed:

1. a “straight pass”, where the vector of input values   is 
given to the first layer of the network, and outputs 
of each polynomial “neuron” are calculated until the 
very last “output” neuron;

2. a “backward pass” where error derivative functions 
of each weight are calculated using the following 
formulas:

{ }, 2 2, , , ,
Tl m

i j i j i j
f

x x x x x x
a

∂
=

∂


,

1 2 , 1,
1,

1 2 , 1,
,

, 1,

2 ,if  is used as input  for 
2 ,if  is used as input  for 

0,if  is not used as input for 

i ij j i i l m i l h
l h

j ij i j j l m j l h
l m

l m l h

a a x a x f x f
f

a a x a x f x f
f

f f

+
+

+

+

 + +
∂ 

= + +
∂ 



;

 – according to the dropout regularization procedure, 
in the beginning of each iteration on a pair <input 
vector, output value> from the training set, one 
should generate a random number between 0 and 1 
for every neuron in the network (including fictitious 
neurons that represent the network’s inputs) and, 
with some probability, “delete” this neuron from a 
network during this iteration. “Deleting” a neuron 
here means setting all its input and output weights 
to 0. In the original paper, the authors suggest using 
a probability of deletion p = 0.2 for fictitious input 
neurons, and a probability of deletion p  =  0.5 for 
hidden neurons;

 – all calculated derivatives are summed over all exam-
ples;
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 – each weight is updated by the following rule:
( ) ( 1)

( 1)

( )
( ) ( 1)

( 1)

, * 0,

, * 0

t t
t

ij
ij ijt

ij t t
t

ij
ij ij

E E
w w

E E
w w

−
−+

−
−−

 ∂ ∂
a ∆ > ∂ ∂∆ = 

∂ ∂a ∆ < ∂ ∂

,

( )
( ) ( 1) ( )*

t
t t t

ij ij ij
ij

Ew w sign
w

−
 ∂ = − ∆
 ∂ 

.

If the sign of the error function’s derivative by the 
weight coincides with the sign of the derivative on the 
previous iteration, the correction value for this weight 
will be multiplied by some factor 1+a > . Otherwise, the 
correction value is multiplied by a factor 1−a < . On the 
very first iteration some constant correction value is used 

(0)
ij c∆ = . The following values   of the constants are recom-

mended in the original paper: a+ = 1.2, a– = 0.5, c = 0.1 
(these parameters also belong to the hyperparameters vec-
tor, meaning that, to achieve the best results for a particu-
lar problem, these parameters should also be adjusted);

 – after the updates of all weights, a network’s error on 
the training set is calculated, and, if the error is less 
than on the previous iteration, the training contin-
ues,  if the opposite is true,  the training  stops  and 
weights “rollback” to  their values on the previous 
iteration.

 – according to the dropout regularization procedure, 
after the training stops, outgoing weights of all 
neurons are multiplied by value 1-p, where p is the 
“deletion” probability that was used for this neuron 
during training.

4. As a result, we simply have a polynomial neural net-
work, so forecasting on new data is performed as 
usual: the input vector x



 is sent on the first network 
layer, and, after that, the outputs of all neurons are 
calculated layer by layer, up to the last layer with 
one neuron, the output of which will be the forecast 
itself.

4. Comparison on test data sets

Publicly available time series of Australia’s major domestic 
airlines yearly revenue passenger kilometers (RPK) for the 
years 1944–2012 were used to test the performance of the 
suggested algorithm compared to:

 – the Box-Jenkins method;
 – the DBN network;
 – the multilayered GMDH algorithm;
 – the ANFIS method.

The MATLAB software package was used to train fore-
casting models using the corresponding methods (a new 
function was written to implement the proposed algo-
rithm). In order to perform a more comprehensive com-
parison, multiple possible values for the number of previ-
ous time series values to be used as inputs were tested, 
namely all values from 2 to 10 inclusively. All models were 
trained to give a year ahead prediction. All methods were 
used with their default hyperparameters values. 80% of an 
entire examples set were randomly selected as a training 
set, the remaining 20% were used to test the forecasting 
model’s performance. Comparisons of the results are pre-
sented in the following tables.

Table 1. Forecasting errors obtained by Box-Jenkins models

Number of previous time 
series values used as inputs 2 3 4 5 6 7 8 9 10

MAE 0.1614 0.2444 0.1437 0.1697 0.1814 0.1466 0.202 0.1554 0.3299
MAPE 1.3065 1.1357 0.812 2.2625 0.9043 1.6064 1.7148 2.5098 1.3746
MSE 0.1018 0.2174 0.0622 0.1131 0.1074 0.0758 0.0959 0.0481 0.2063

Table 2. Forecasting errors obtained by DBN models

Number of previous time 
series values used as inputs 2 3 4 5 6 7 8 9 10

MAE 0.1672 0.2562 0.1492 0.1735 0.1773 0.1482 0.1958 0.1617 0.3419
MAPE 1.3139 1.2164 0.8119 2.0429 0.8815 1.5303 1.6578 2.6484 1.4589
MSE 0.1052 0.2306 0.0674 0.1071 0.1012 0.0756 0.0904 0.0486 0.2181

Table 3. Forecasting errors obtained by multilayered GMDH models

Number of previous time 
series values used as inputs 2 3 4 5 6 7 8 9 10

MAE 0.088 0.3146 0.1021 0.1214 0.1506 0.1479 0.1491 0.3302 0.317
MAPE 1.3717 2.5654 1.0731 2.1795 1.4383 1.947 0.9468 5.2686 1.5316
MSE 0.0184 0.386 0.0212 0.0332 0.0547 0.0882 0.0888 0.3199 0.2225
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Table 6. MAE of the tested methods, aggregated over all 
number of inputs used

Aggregation method Mean Min Max

Box-Jenkins method 0.1927 0.1437 0.3299
DBN 0.1968 0.1482 0.3419
GMDH 0.1912 0.088 0.3302
ANFIS 0.2376 0.1517 0.3424
Suggested algorithm 0.1744 0.065 0.3253

As seen from the results of the comparison, the sug-
gested algorithm’s average, min and max MAE is the 
smallest of all the compared methods.

The Figure 3 below shows the forecast on an entire 
data set of the best accuracy model trained by using the 
suggested algorithm.

Figure 3. Forecast of the best model trained by the suggested 
algorithm vs the original data. Continuous line – original data, 

dots – forecast

Conclusions

The paper has proposed a new time series forecasting 
method based on GMDH and deep learning approaches. 
The proposed algorithm was used to predict Australia’s 
major domestic airlines yearly revenue passenger kilom-
eters, together with other forecasting methods, namely: 
GMDH, ANFIS, DBN and Box-Jenkins. As seen from the 
tables comparing the results, the average MAE error of 
the proposed method is approximately 10% smaller than 
the average MAE of next best method – GMDH, and the 
best reached MAE is approximately 25% smaller than 
the corresponding best MAE of the GMDH. This indi-
cates that the practical application of the method can give 
good results compared to other well-known methods. The 
originality of this paper is the combination of the GMDH 
to perform a network’s pre-training and gradient descent 
together with dropout to perform fine-tuning.
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