
Copyright © 2018 The Author(s). Published by VGTU Press

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

AVIATION
ISSN: 1648-7788 / eISSN: 1822-4180

2018 Volume 22 Issue 1: 6–12

https://doi.org/10.3846/aviation.2018.2048

*Corresponding author. E-mail: vladislav.horbatiuk@gmail.com

FORECASTING AIRCRAFT MILES FLOWN TIME SERIES USING A DEEP
LEARNING-BASED HYBRID APPROACH

Victor SINEGLAZOV1, Olena CHUMACHENKO2, Vladyslav GORBATIUK3, *

1Aviation Computer-Integrated Complexes Department, Educational and Research Institute of Aeronavigation,
National Aviation University, Kosmonavta Komarova 1, 03058, Kyiv, Ukraine

2, 3Technical Cybernetics Department, Faculty of Informatics and Computer Science, National Technical
University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Peremogy Ave 37, 03056, Kyiv, Ukraine

Received 09 September 2016; accepted 10 May 2018

Abstract. Neural network-based methods such as deep neural networks show great efficiency for a wide range of applications. In
this paper, a deep learning-based hybrid approach to forecast the yearly revenue passenger kilometers time series of Australia’s
major domestic airlines is proposed. The essence of the approach is to use a resilient error backpropagation algorithm with
dropout for “tuning” the polynomial neural network, obtained as a result of a multi-layered GMDH algorithm. The article com-
pares the performance of the suggested algorithm on the time series with other popular forecasting methods: deep belief network,
multi-layered GMDH algorithm, Box-Jenkins method and the ANFIS model. The minimum reached MAE of the proposed algo-
rithm was approximately 25% lower than the minimum MAE of the next best method – GMDH, thus indicating that the practical
application of the algorithm can give good results compared with other well-known methods.

Keywords: forecasting, neural networks, time series, deep learning, hybrid algorithm, group method of data handling.

Introduction

Predicting market demand for air transportation is of
great significance for airlines, as well as for investors,
since the accuracy of such a prediction has a big impact
on investment efficiency (Blinova, 2007). Therefore, airline
transportation demand metrics, like Revenue Passenger
Kilometers (RPK), are one of the key factors that are con-
sidered when preparing an airline’s annual operating plan,
performing fleet planning and developing the route net-
work (Ba-Fail, Abed, & Jasimuddin, 2000; Doganis, 2009).
Besides, examining and estimating an airline’s transporta-
tion demand may likewise help an airline mitigate its risk
through an objective assessment of the demand side of
the airline business (Abed, Ba-Fail, & Jasimuddin, 2001;
Ba-Fail et al., 2000).

In recent years, very good results for a wide range of
applications have been shown by neural network-based
methods such as deep neural networks, including the fol-
lowing applications: image recognition (Girshick, Dona-
hue, Darrell, & Malik, 2013), speech recognition (Bahdan-
au, Chorowski, Serdyuk, Brakel, & Bengio, 2016), machine
translation (Bahdanau, Cho, & Bengio, 2014), reinforce-
ment learning (Mnih et al., 2013) and many others. In

essence, many of these applications require some kind of
function approximation to be performed in order to build
a corresponding model, which should indicate the general
suitability of deep learning-based methods as a function
approximation mechanism. We propose a deep learning-
based hybrid approach to forecast the yearly revenue pas-
senger kilometers (RPK) time series of Australia’s major
domestic airlines, which are publicly available (Australian
Domestic Airline Activity-time series, n.d.).

1. Formulation of the problem

Suppose that a sequence of values 1[,...,]Tnx x x=


 was ob-
served at successive moments of time 1[,...,]Tnt t t=



 with
a given constant period 1 , 2,...,i it t T i n−− = = . Then the
forecasting problem (Figure 1) that is considered in this
paper can be formulated as: by using the available data
(Figure 1, A), construct a model of the process being fore-
cast, which takes k successive values 1[,...,]Ti k ix x− + as
inputs and gives the prediction for value i hx + at some
future point in time i ht + (Figure 1, B).

http://creativecommons.org/licenses/by/4.0/

Aviation, 2018, 22(1): 6–12 7

Figure 1. Graphical representation of the forecasting problem:
A – known values, B – future values

2. Review of existing methods

Currently, main approaches to forecasting problems can
be divided into 2 groups:

 – “Classical” methods like linear regression, or Box-
Jenkins method (Box & Jenkin, 1970), etc.

 – Methods based on artificial intelligence – group
method of data handling (Stepashko, 1988) methods
family, artificial neural networks-based methods,
genetic algorithms, fuzzy logic-based methods and
different hybrid algorithms, like adaptive network-
based fuzzy inference system.

Let us shortly review the main methods from both
groups.

The Box-Jenkins method is an ARIMA (Asteriou &
Hall, 2011) model-based method that uses an iterative
three-stage modelling approach, as described below:

1. Model identification and model selection: checking
the stationarity of variables, checking the seasonal-
ity in the dependent series, plotting the autocorre-
lation and partial autocorrelation functions of the
dependent time series to decide which autoregres-
sive or moving average component should be used
in the model;

2. Parameter estimation using computation algo-
rithms to arrive at coefficients that best fit the se-
lected ARIMA model. The most common methods
use maximum likelihood estimation or non-linear
least-squares estimation;

3. Model checking by testing, to determine whether
the estimated model conforms to the specifications
of a stationary univariate process. In particular, the
residuals should be independent of each other and
constant in mean and variance over time. Plotting
the mean and variance of residuals over time and
performing a Ljung–Box test or plotting autocorre-
lation and partial autocorrelation of the residuals are
helpful to identify misspecification. If the estimation
is inadequate, we have to return to step one and at-
tempt to build a better model.

Group method of data handling (GMDH) is a set of
forecasting algorithms that are based on a selection of the
best models from the set of trained simple models and
the subsequent construction of more complex models us-
ing the selected ones. The accuracy of the forecast is im-
proved with the increase in the complexity of the models.
The selection criterion is based on the performance of the
models on the validation set, while the model parameters
are determined using the training set. The simplest mod-

els, also called the basis functions, are usually of the fol-
lowing form:

1 0
1 1 1

(,...,) ...
n n n

n i i ij i j
i i j

F x x a a x a x x
= = =

= + + +∑ ∑∑ .

Nevertheless, it is possible to use any other type of
basis functions, including harmonic series, exponential
series, etc.

GMDH-like algorithms show good forecasting accu-
racy for real-life processes, mainly due to their use of an
external criterion (i.e. the models are selected using data
that were not used for their training).

Artificial neural networks (Rosenblatt, 1958) are a
system of connected and interacting artificial neurons –
simplified mathematical models of biological neural cells.
ANN cannot be programmed in the usual sense of the
word: they are trained. During the training, the neural
network is able to detect the complex relationship between
the input and output data and to perform a generalization.
The ability of neural networks to carry out the prediction
follows directly from their ability to generalize and find
hidden relationships between input and output data. After
training, the network is able to predict the future value of
a specific sequence based on a number of previous values
and/or any current factors.

Nowadays deep learning and deep neural networks are
the most promising direction in the study of ANN. This
trend began to develop in connection with the problem of
effective learning of neural networks with a large number
of layers (it is worth noting that the recurrent networks can
also be represented as feedforward networks with a very
large number of layers): the standard backpropagation al-
gorithm gave poor results for these networks – the gradient
of the error either faded on the backward pass by layers,
leading to the weights of the first layers almost being not
trained at all, or grew indefinitely, leading to a divergence
of the learning process. In (Hinton, 1989), a solution to this
problem was proposed for the first time: the network was
constructed layer by layer, and the initial weights between
the two layers were found using a restricted Boltzmann
machine algorithm. Afterwards, the resulting network was
additionally tuned using a standard backpropagation algo-
rithm, since the initial weights already provided a “reason-
able” network behaviour, the problem with fading or over-
increasing gradients disappeared. Thus, we can distinguish
two main stages of deep neural networks’ training:

1. “Preliminary” deep network training (pre-training),
the essence of which is to add new layers one by
one and during which the weights between two lay-
ers are trained separately – most often using the
restricted Boltzmann machine training algorithm.

2. “Tuning” of the obtained network structure using the
error back propagation algorithm (or some modifica-
tion of it), sometimes with the use of regularization
methods (currently, a dropout algorithm (Hinton,
Srivastava, Krizhevsky, Sutskever, & Salakhutdinov,
2012) is the most popular regularization method for
the training of deep networks).

8 V. Sineglazov et al. Forecasting aircraft miles flown time series using a deep learning-based hybrid approach

In the area of time series forecasting, deep belief net-
works (DBN) (Lee, Grosse, Ranganath, & Ng, 2009) are
showing the most promising results. A deep belief network
(DBN) is a deep neural network composed of multiple lay-
ers of hidden units, with connections between the layers
but not between units within each layer. When trained on
a set of examples without supervision, a DBN can learn to
probabilistically reconstruct its inputs. The layers then act
as feature detectors. After this learning step, a DBN can be
further trained with supervision to perform classification
or regression. A few articles describing the application of
DBNs to time series forecasting are (Kuremoto, Kimura,
Kobayashi, & Obayashi, 2014), (Qiu, Zhang, Ren, Sugan-
than, & Amaratunga, 2014), (Chao, Shen, & Zhao, 2011),
and others.

Adaptive network-based fuzzy inference system (Jang,
1993) is a hybrid algorithm that combines both ANN
and fuzzy inference systems (Fang, 2012; Liu, C., Liu, X.,
Huang, Zhao, 2008) and aims at utilizing the advantages
of both approaches by using prior information in a form
of fuzzy rules and capturing hidden dependencies by per-
forming parameter “learning” (Jang, Sun, & Mizutani,
1997; Xiao et al., 2014; Yetilmezsoy, Fingas, & Fieldhouse,
2011). In other words, during learning, the ANFIS tries to
find optimal parameters of some fuzzy inference system.
“Optimal” here is defined by some error criterion that
usually measures how accurate a given model is on a test
data, hence, the parameters that minimize a given error
criterion are optimal (Goyal, Bharti, Quilty, Adamowski,
& Pandey, 2014). Usually, in the ANFIS, membership
function parameters and fuzzy rule parameters are opti-
mized during learning.

3. Literature review and algorithm description

In (Schmidhuber, 2015), it is mentioned that despite the
relative newness of deep learning methods, GMDH was
the first method allowing to effectively train polynomial
deep neural networks. Indeed, a multilayered GMDH
algorithm builds a deep polynomial neural network, see
(Kondo, 1998; Srinivasan, 2008) for an example. The net-
work weights are trained in a “greedy” manner by tun-
ing the weights of each new layer of neurons separately,
with all previous weights being fixed. This results in a very
computationally efficient procedure for training deep net-
works. However, since only a portion of the entire net-
work’s weights is trained at each iteration, the training
may stop without finding globally optimal weights. Ac-
tually, it may stop without even finding locally optimal
weights, since an appropriate error function is never mini-
mized explicitly.

Later, another method for training multilayered
networks was introduced – well known nowadays as
backpropagation (LeCun, Bottou, Orr, & Müller, 1998).
Backpropagation allowed calculating the true gradient of
error function with respect to every weight of a mul-
tilayer neural network, thus one could use any suitable
first-order gradient descent method to perform weights

optimization and find local optima. Theoretically, this
should “solve” the problem of training multilayer neu-
ral networks, but, in practice, results were not very good
for deep networks, see (Bengio, De Mori, Flammia, &
Kompe, 1992), (Bengio, Simard, & Frasconi, 1994) for
an example. The core issue with training deep networks
using backpropagation was soon found: vanishing/ex-
ploding gradients problem (Hochreiter, Bengio, Frasco-
ni, & Schmidhuber, 2001). Essentially, according to the
backpropagation method, an error function’s gradient for
the weights in “early” layers (layers, that are closer to
inputs) is a sum of the products of terms involving an
error function’s gradients for the weights in all following
layers. When there are many layers that is an intrinsically
unstable situation – if many gradients in deeper layers
are smaller than 1 in an absolute value, their product
will be close to 0, thus leading to a “vanishing” gradient
for the early layers; and vice versa – if many gradients in
deeper layers are bigger than 1 in an absolute value, their
product will increase exponentially, leading to “explod-
ing” gradients in early layers.

One approach to these issues was first suggested
in (Hinton, 2009). The main idea of the approach is to
first perform “pre-training” of each layer of the network
by separately using the Restricted Boltzmann Machines
(RBM) training algorithm. Then, the obtained network
weights are used as initial weights in the backpropagation
algorithm. Though not very well-founded theoretically, in
practice, such “pre-training” does indeed help in reduc-
ing the vanishing/exploding gradient problem effect. In
(Erhan et al., 2010), it is suggested that pre-training over-
comes the challenges of deep learning by introducing a
useful prior to the fine-tuning training procedure.

Another problem common for all “complex” forecast-
ing models, including deep neural networks, is overfit-
ting –complex models can potentially “memorize” training
sets instead of finding actual dependencies, and perform
badly on new data it has not seen before. Different tech-
niques have been suggested to overcome this issue: regu-
larization (Krogh & Hertz, 1992), early training stopping
(Prechelt, 1998), validation set checking, etc. In (Hinton
et al., 2012), a new “dropout” approach tailored specifi-
cally to deep neural networks was suggested. According
to the approach, one should randomly perform tempo-
rary deletion of the network’s neurons during training it-
erations. This can be viewed as a crude approximation to
performing Bayesian model averaging (BMA) (Hoeting,
Madigan, Raftery, & Volinsky, 1998), which is another way
of dealing with overfitting. The problem with BMA is that
is does not scale well to very large network sizes, so it can-
not be applied to deep neural networks practically, while
dropout scales extremely well.

The essence of the proposed approach is to view a
multi-layered GMDH algorithm as a pre-training stage
of fitting a deep polynomial neural network and then to
apply a resilient error backpropagation algorithm (rprop)
(Riedmiller & Braun, 1992) with dropout to perform fine-
tuning.

Aviation, 2018, 22(1): 6–12 9

The proposed algorithm for constructing and training
deep polynomial neural networks consists of the follow-
ing stages.

1. Transforming original time series { }nx :
 – calculating the finite difference time series:

1i i id x x+= − ;
 – normalizing difference time series to zero mean and
unit standard deviation: i

i
d

d
−µ

=
σ

;
 – preparing the input samples matrix X and the
outputs vector y using the time series embedding
method with some embedding dimension k:

1 1

1

,
k k

N k N N

d d d
X y

d d d

+

− −

   
   = =   

     





   



.

2. Pre-training stage using a multi-layered
GMDH algorithm to obtain the original struc-
ture and weights of the polynomial neural network:

 – the entire sample set is randomly divided into train-
ing and validation sets; usually 70% of all samples go
into the training set and 30% of the remaining sam-
ples go into the validation set, but one can choose
another ratio – the training set size to validation set
size ratio is one of the hyperparameters of this ap-
proach;

 –
2
kC models of the form:

2 2
1 1 2 2(,)i j i i j j ij i j i i j jf x x a x a x a x x a x a x= + + + + ,

 – are trained using a linear regression on the training
set;

 – for each model f , its error is calculated on the vali-
dation set:

2

(,) (,)
() (())

v vx y X y
E f f x y

∈
= −∑

 



;

 – ls models with the lowest error are selected, where
l is the layer number in a multi-layered GMDH al-
gorithm (for the simplicity of implementation, ls k=
is often used);

 – outputs of these models for each sample of the train-
ing set form a new matrix of inputs (1)X for the next
layer of models:

1 1 1
(1)

1

() ()

() ()

l

l

s

N k s N k

f d f d

X

f d f d− −

 
 
 =
 
  

 



  

 



,

 – where { }1 1, , ,
T

p p p p kd d d d+ + −=


 , and ()m pf d


means that only the elements under the indices i
and j which correspond to the model mf will be
taken from vector pd



;
 – if the minimum error on a validation set of all mod-
els in the current layer is less than the minimum er-
ror of all models from the previous layer (or if it is
the first layer), a transition to the following layer is

performed (starting from stage 2.2), otherwise the
algorithm stops and the best model of the previous
series is selected as the “final” one; the criterion for
the GMDH algorithm stop can be stated as:

1

1,
min () min (),

l lf F f F

l
E f E f

−∈ ∈

>
 ≥


 – where l is the number of the current layer; lF – set
of all models of the current layer. As the output of
this stage, the polynomial neural network with a
structure shown in Figure 2 below is obtained:

Figure 2. Polynomial neural network

3. Tuning stage, where the weights of the resulting net-
work are trained with the use of the resilient error
backpropagation algorithm:

 – for each pair <input vector, output value> from the
training set, two so-called passes are performed:

1. a “straight pass”, where the vector of input values is
given to the first layer of the network, and outputs
of each polynomial “neuron” are calculated until the
very last “output” neuron;

2. a “backward pass” where error derivative functions
of each weight are calculated using the following
formulas:

{ }, 2 2, , , ,
Tl m

i j i j i j
f

x x x x x x
a

∂
=

∂


,

1 2 , 1,
1,

1 2 , 1,
,

, 1,

2 ,if is used as input for
2 ,if is used as input for

0,if is not used as input for

i ij j i i l m i l h
l h

j ij i j j l m j l h
l m

l m l h

a a x a x f x f
f

a a x a x f x f
f

f f

+
+

+

+

 + +
∂ 

= + +
∂ 



;

 – according to the dropout regularization procedure,
in the beginning of each iteration on a pair <input
vector, output value> from the training set, one
should generate a random number between 0 and 1
for every neuron in the network (including fictitious
neurons that represent the network’s inputs) and,
with some probability, “delete” this neuron from a
network during this iteration. “Deleting” a neuron
here means setting all its input and output weights
to 0. In the original paper, the authors suggest using
a probability of deletion p = 0.2 for fictitious input
neurons, and a probability of deletion p = 0.5 for
hidden neurons;

 – all calculated derivatives are summed over all exam-
ples;

10 V. Sineglazov et al. Forecasting aircraft miles flown time series using a deep learning-based hybrid approach

 – each weight is updated by the following rule:
() (1)

(1)

()
() (1)

(1)

, * 0,

, * 0

t t
t

ij
ij ijt

ij t t
t

ij
ij ij

E E
w w

E E
w w

−
−+

−
−−

 ∂ ∂
a ∆ > ∂ ∂∆ = 

∂ ∂a ∆ < ∂ ∂

,

()
() (1) ()*

t
t t t

ij ij ij
ij

Ew w sign
w

−
 ∂ = − ∆
 ∂ 

.

If the sign of the error function’s derivative by the
weight coincides with the sign of the derivative on the
previous iteration, the correction value for this weight
will be multiplied by some factor 1+a > . Otherwise, the
correction value is multiplied by a factor 1−a < . On the
very first iteration some constant correction value is used

(0)
ij c∆ = . The following values of the constants are recom-

mended in the original paper: a+ = 1.2, a– = 0.5, c = 0.1
(these parameters also belong to the hyperparameters vec-
tor, meaning that, to achieve the best results for a particu-
lar problem, these parameters should also be adjusted);

 – after the updates of all weights, a network’s error on
the training set is calculated, and, if the error is less
than on the previous iteration, the training contin-
ues, if the opposite is true, the training stops and
weights “rollback” to their values on the previous
iteration.

 – according to the dropout regularization procedure,
after the training stops, outgoing weights of all
neurons are multiplied by value 1-p, where p is the
“deletion” probability that was used for this neuron
during training.

4. As a result, we simply have a polynomial neural net-
work, so forecasting on new data is performed as
usual: the input vector x



 is sent on the first network
layer, and, after that, the outputs of all neurons are
calculated layer by layer, up to the last layer with
one neuron, the output of which will be the forecast
itself.

4. Comparison on test data sets

Publicly available time series of Australia’s major domestic
airlines yearly revenue passenger kilometers (RPK) for the
years 1944–2012 were used to test the performance of the
suggested algorithm compared to:

 – the Box-Jenkins method;
 – the DBN network;
 – the multilayered GMDH algorithm;
 – the ANFIS method.

The MATLAB software package was used to train fore-
casting models using the corresponding methods (a new
function was written to implement the proposed algo-
rithm). In order to perform a more comprehensive com-
parison, multiple possible values for the number of previ-
ous time series values to be used as inputs were tested,
namely all values from 2 to 10 inclusively. All models were
trained to give a year ahead prediction. All methods were
used with their default hyperparameters values. 80% of an
entire examples set were randomly selected as a training
set, the remaining 20% were used to test the forecasting
model’s performance. Comparisons of the results are pre-
sented in the following tables.

Table 1. Forecasting errors obtained by Box-Jenkins models

Number of previous time
series values used as inputs 2 3 4 5 6 7 8 9 10

MAE 0.1614 0.2444 0.1437 0.1697 0.1814 0.1466 0.202 0.1554 0.3299
MAPE 1.3065 1.1357 0.812 2.2625 0.9043 1.6064 1.7148 2.5098 1.3746
MSE 0.1018 0.2174 0.0622 0.1131 0.1074 0.0758 0.0959 0.0481 0.2063

Table 2. Forecasting errors obtained by DBN models

Number of previous time
series values used as inputs 2 3 4 5 6 7 8 9 10

MAE 0.1672 0.2562 0.1492 0.1735 0.1773 0.1482 0.1958 0.1617 0.3419
MAPE 1.3139 1.2164 0.8119 2.0429 0.8815 1.5303 1.6578 2.6484 1.4589
MSE 0.1052 0.2306 0.0674 0.1071 0.1012 0.0756 0.0904 0.0486 0.2181

Table 3. Forecasting errors obtained by multilayered GMDH models

Number of previous time
series values used as inputs 2 3 4 5 6 7 8 9 10

MAE 0.088 0.3146 0.1021 0.1214 0.1506 0.1479 0.1491 0.3302 0.317
MAPE 1.3717 2.5654 1.0731 2.1795 1.4383 1.947 0.9468 5.2686 1.5316
MSE 0.0184 0.386 0.0212 0.0332 0.0547 0.0882 0.0888 0.3199 0.2225

Aviation, 2018, 22(1): 6–12 11

Table 6. MAE of the tested methods, aggregated over all
number of inputs used

Aggregation method Mean Min Max

Box-Jenkins method 0.1927 0.1437 0.3299
DBN 0.1968 0.1482 0.3419
GMDH 0.1912 0.088 0.3302
ANFIS 0.2376 0.1517 0.3424
Suggested algorithm 0.1744 0.065 0.3253

As seen from the results of the comparison, the sug-
gested algorithm’s average, min and max MAE is the
smallest of all the compared methods.

The Figure 3 below shows the forecast on an entire
data set of the best accuracy model trained by using the
suggested algorithm.

Figure 3. Forecast of the best model trained by the suggested
algorithm vs the original data. Continuous line – original data,

dots – forecast

Conclusions

The paper has proposed a new time series forecasting
method based on GMDH and deep learning approaches.
The proposed algorithm was used to predict Australia’s
major domestic airlines yearly revenue passenger kilom-
eters, together with other forecasting methods, namely:
GMDH, ANFIS, DBN and Box-Jenkins. As seen from the
tables comparing the results, the average MAE error of
the proposed method is approximately 10% smaller than
the average MAE of next best method – GMDH, and the
best reached MAE is approximately 25% smaller than
the corresponding best MAE of the GMDH. This indi-
cates that the practical application of the method can give
good results compared to other well-known methods. The
originality of this paper is the combination of the GMDH
to perform a network’s pre-training and gradient descent
together with dropout to perform fine-tuning.

Disclosure statement

No financial, professional, or personal interests from other
parties were reported by the authors.

References
Abed, S. Y., Ba-Fail, A. O., & Jasimuddin, S. M. (2001). An

econometric analysis of international air travel demand in
Saudi Arabia. Journal of Air Transport Management, 7(3),
143-148. https://doi.org/10.1016/S0969-6997(00)00043-0

Asteriou, D., & Hall, S. G. (2011). ARIMA Models and the
Box–Jenkins methodology. In Applied Econometrics (2nd ed.,
pp. 265-286). Palgrave MacMillan.

Australian Domestic Airline Activity-time series. (n.d.). Re-
trieved from https://bitre.gov.au/publications/ongoing/
files/domestic_airline_activity_Domestic_Annual_Summa-
ry_1944_2012-13.xls

Ba-Fail, A. O., Abed, S. Y., & Jasimuddin, S. M. (2000). The deter-
minants of domestic air travel demand in the Kingdom of Saudi
Arabia. Journal of Air Transportation World Wide, 5(2), 72-86.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Table 4. Forecasting errors obtained by ANFIS models

Number of previous time
series values used as inputs 2 3 4 5 6 7 8 9 10

MAE 0.1517 0.2236 0.2441 0.2759 0.2150 0.3424 0.2027 0.163 0.3196
MAPE 1.6127 2.4546 2.6067 2.6413 2.5064 2.5098 1.6554 2.6853 1.2624
MSE 0.0818 0.2131 0.2130 0.1970 0.1963 0.4117 0.0977 0.0532 0.1945

Table 5. Forecasting errors obtained by models built using proposed algorithm

Number of previous time
series values used as inputs 2 3 4 5 6 7 8 9 10

MAE 0.0656 0.3253 0.0948 0.1007 0.1251 0.158 0.1247 0.3063 0.2692
MAPE 1.231 1.6255 1.0662 0.9084 1.3409 1.0142 0.9153 1.9276 1.4185
MSE 0.0102 0.4127 0.0183 0.0228 0.0378 0.1006 0.0622 0.2753 0.1605

https://doi.org/10.1016/S0969-6997(00)00043-0
https://bitre.gov.au/publications/ongoing/files/domestic_airline_activity_Domestic_Annual_Summary_1944_2012-13.xls
https://bitre.gov.au/publications/ongoing/files/domestic_airline_activity_Domestic_Annual_Summary_1944_2012-13.xls
https://bitre.gov.au/publications/ongoing/files/domestic_airline_activity_Domestic_Annual_Summary_1944_2012-13.xls

12 V. Sineglazov et al. Forecasting aircraft miles flown time series using a deep learning-based hybrid approach

Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., & Bengio, Y.
(2016). End-to-end attention-based large vocabulary speech
recognition. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Shanghai (pp. 4945-
4949). https://doi.org/10.1109/ICASSP.2016.7472618

Bengio, Y., De Mori, R., Flammia, G., & Kompe, R. (1992). Glob-
al optimization of a neural network-hidden Markov model
hybrid. IEEE Transactions on Neural Networks, 3(2), 252-259.
https://doi.org/10.1109/72.125866

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term
dependencies with gradient descent is difficult. IEEE Transac-
tions on Neural Networks, 5(2), 157-166.
https://doi.org/10.1109/72.279181

Blinova, T. O. (2007). Analysis of possibility of using neural network
to forecast passenger traffic flows in Russia. Aviation 11(1), 28-34.

Box, G., & Jenkins, G. (1970). Time series analysis: Forecasting
and control (pp. 211-216). San Francisco: Holden-Day.

Chao, J., Shen, F., & Zhao, J. (2011, July). Forecasting exchange
rate with deep belief networks. In The 2011 International Joint
Conference on Neural Networks (IJCNN) (pp. 1259-1266).
IEEE. https://doi.org/10.1109/IJCNN.2011.6033368

Doganis, R. (2009). Flying off course: airline economics and mar-
keting (4th ed.). Abingdon: Routledge.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P. A., Vincent, P., &
Bengio, S. (2010). Why does unsupervised pre-training help deep
learning?. Journal of Machine Learning Research, 11(Feb), 625-660.

Fang, H. (2012). Adaptive neuro fuzzy inference system in the
application of the financial crisis. International Journal of In-
novation, Management and Technology, 3(3), 250-254.

Girshick, R., Donahue, J., Darrell, T. & Malik, J. (2013). Rich
feature hierarchies for accurate object detection and seman-
tic segmentation. In Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition.
https://doi.org/10.1109/CVPR.2014.81

Goyal, M. K., Bharti, B., Quilty, J., Adamowski, J., & Pandey, A.
(2014). Modelling of daily pan evaporation in subtropical cli-
mates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert
Systems with Applications, 41(11), 5267-5276.
https://doi.org/10.1016/j.eswa.2014.02.047

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., &
Salakhutdinov, R. R. (2012). Improving neural networks by
preventing co-adaptation of feature detectors. WS13/14 Ma-
chine Learning Seminar, (pp. 1-18). Retrieved from
https://arxiv.org/pdf/1207.0580.pdf

Hinton, G. E. (1989). Deterministic Boltzmann learning per-
forms steepest descent in weight-space. Neural Computation,
1(1), 143-150. https://doi.org/10.1162/neco.1989.1.1.143

Hinton, G. E. (2009). Deep belief networks. Scholarpedia, 4(5),
5947. https://doi.org/10.4249/scholarpedia.5947

Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001).
Gradient flow in recurrent nets: the difficulty of learning long-
term dependencies. Retreived from
http://www.bioinf.jku.at/publications/older/ch7.pdf

Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T.
(1998, May). Bayesian model averaging. In Proceedings of
the AAAI Workshop on Integrating Multiple Learned Models
(Vol. 335, pp. 77-83).

Jang, J. S. R. 1993. ANFIS-adaptive-network-based fuzzy infer-
ence system. IEEE Transactions Systems, Man and Cybernet-
ics, 23(3), 665-685. https://doi.org/10.1109/21.256541

Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neuro-fuzzy and
soft computing: a computational approach to learning and ma-
chine intelligence (1st ed.). New Jersey: Prentice Hall.

Kondo, T. (1998, July). GMDH neural network algorithm using the
heuristic self-organization method and its application to the pat-
tern identification problem. In SICE’98. Proceedings of the 37th
SICE Annual Conference. International Session Papers (pp. 1143-
1148). IEEE. https://doi.org/10.1109/SICE.1998.742993

Krogh, A., & Hertz, J. A. (1992). A simple weight decay can im-
prove generalization. In M. I. Jordan, Y. LeCun & S. A. Solla.
Advances in neural information processing systems (pp. 950-
957). The MIT Press.

Kuremoto, T., Kimura, S., Kobayashi, K., & Obayashi, M. (2014).
Time series forecasting using a deep belief network with re-
stricted Boltzmann machines. Neurocomputing, 137, 47-56.
https://doi.org/10.1016/j.neucom.2013.03.047

LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. R. (1998). Efficient
backprop. In Neural networks: Tricks of the trade (pp. 9-50). Ber-
lin, Heidelberg: Springer. https://doi.org/10.1007/3-540-49430-8_2

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009, June).
Convolutional deep belief networks for scalable unsupervised
learning of hierarchical representations. In Proceedings of the
26th Annual International Conference on Machine Learning
(pp. 609-616). ACM. https://doi.org/10.1145/1553374.1553453

Liu, C., Liu, X., Huang, H., & Zhao, L. (2008). Low circle fatigue
life model based on ANFIS. In D. S. Huang, D. C. Wunsch II,
D. S. Levine, et al. (Eds.). Advanced intelligent computing theo-
ries and applications: With aspects of contemporary intelligent
computing techniques (pp. 139-144). Berlin: Springer Verlag.
https://doi.org/10.1007/978-3-540-85930-7_19

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602.

Prechelt, L. (1998). Automatic early stopping using cross valida-
tion: quantifying the criteria. Neural Networks, 11(4), 761-
767. https://doi.org/10.1016/S0893-6080(98)00010-0

Qiu, X., Zhang, L., Ren, Y., Suganthan, P. N., & Amaratunga, G.
(2014, December). Ensemble deep learning for regression and
time series forecasting. In 2014 IEEE Symposium on Compu-
tational Intelligence in Ensemble Learning (CIEL) (pp. 1-6).
IEEE. https://doi.org/10.1109/CIEL.2014.7015739

Riedmiller, M., & Braun, H. (1992). Rprop – A fast adaptive
learning algorithm. In Proceedings of the International Sym-
posium on Computer and Information Science VII (pp. 57-64).

Rosenblatt, F. (1958). The perceptron: A probalistic model for
information storage and organization in the brain. Psychologi-
cal Review, 65(6), 386-408. https://doi.org/10.1037/h0042519

Schmidhuber, J. (2015). Deep learning in neural networks: An
overview. Neural Networks, 61, 85-117.
https://doi.org/10.1016/j.neunet.2014.09.003

Srinivasan, D. (2008). Energy demand prediction using GMDH
networks. Neurocomputing, 72(1-3), 625-629.
https://doi.org/10.1016/j.neucom.2008.08.006

Stepashko, V. S. (1988). GMDH Algorithms as basis of modeling
process automation after experimental data. Soviet Journal of
Automation and Information Sciences, 21(4), 43-53.

Xiao, Y., Liu, J. J., Hu, Y., Wang, Y., Lai, K. K., & Wang, S. (2014).
A neuro-fuzzy combination model based on singular spec-
trum analysis for air transport demand forecasting. Journal
of Air Transport Management, 39, 1-11.
https://doi.org/10.1016/j.jairtraman.2014.03.004

Yetilmezsoy, K., Fingas, M., & Fieldhouse, B. (2011). An adaptive
neuro-fuzzy approach for modelling of water-in-oil emulsion
formation. Colloids and Surfaces A: Physicochemical and Engi-
neering Aspects, 389(1-3), 50-62.
https://doi.org/10.1016/j.colsurfa.2011.08.051

https://doi.org/10.1109/ICASSP.2016.7472618
https://doi.org/10.1109/72.125866
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/IJCNN.2011.6033368
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1016/j.eswa.2014.02.047
https://arxiv.org/pdf/1207.0580.pdf
https://doi.org/10.1162/neco.1989.1.1.143
https://doi.org/10.4249/scholarpedia.5947
http://www.bioinf.jku.at/publications/older/ch7.pdf
https://doi.org/10.1109/21.256541
https://doi.org/10.1109/SICE.1998.742993
https://doi.org/10.1016/j.neucom.2013.03.047
https://doi.org/10.1007/3-540-49430-8_2
https://doi.org/10.1145/1553374.1553453
https://doi.org/10.1007/978-3-540-85930-7_19
https://doi.org/10.1016/S0893-6080(98)00010-0
https://doi.org/10.1109/CIEL.2014.7015739
https://doi.org/10.1037/h0042519
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neucom.2008.08.006
https://doi.org/10.1016/j.jairtraman.2014.03.004
https://doi.org/10.1016/j.colsurfa.2011.08.051

