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Introduction

In recent years, civil aviation in China has been in a stage 
of rapid development. In 2019, China’s civil aviation indus-
try completed 4.9662 million flights, an increase of 5.8% 
over 2018 (Civil Aviation Administration of China, 2021). 
Although the development of the civil aviation industry has 
slowed down due to the impact of COVID-19, the impact is 
temporary, and the continued traffic growth in the future 
will still lead to more and more flight conflicts. Therefore, 
a safe, efficient, real-time and intelligent conflict resolution 
decision-making technology should be developed for air 
traffic controllers (ATCOs) and manage the cognitive work-
load of ATCOs (Loft et al., 2007; Sperandio, 1971). In ICAO 
Doc. 9854 (International Civil Aviation Organization, 2005), 
conflict management is applied in three layers: strategic 
conflict management, separation provision, and collision 
avoidance. This paper mainly focuses on the second layer 
and studies the method of tactical conflict resolution to 
assist ATCOs in decision-making.

Traditional conflict resolution methods include mathe-
matical programming methods, swarm intelligence optimi-
sation or search methods, optimal control and geometric 
optimisation methods. Mathematical programming meth-
ods establish conflict resolution models using approaches 
such as mixed-integer linear programming or mixed-inte-

ger nonlinear programming (Cafieri & Omheni, 2017; Cai 
& Zhang, 2019; Omer, 2015; Çeçen & Cetek, 2020; Hong 
et al., 2017). The quality of solutions to these methods 
highly depends on how accurately the model portrays the 
conflict resolution process. However, the complex aircraft 
motion and the variable airspace environment are difficult 
to portray accurately. The swarm intelligence optimisation 
or search methods accurately portray the conflict resolu-
tion process by portraying the airspace operating envi-
ronment through simulation, but the computing speed is 
slow. Swarm intelligence optimisation methods iterate to 
find better solutions using algorithms such as the Particle 
Swarm Optimization (Emami & Derakhshan, 2014) and the 
Genetic Algorithm (Durand et al., 1996; Ma et al., 2014). 
Search methods include the Monte Carlo tree search al-
gorithm (Sui & Zhang, 2022). Optimal control methods are 
described below. Soler et al. (2016) regarded fuel optimal 
conflict-free trajectory planning as a hybrid optimal con-
trol problem. Matsuno et al. (2016) proposed a stochastic 
optimal approximation algorithm based on the polyno-
mial chaos kriging method to resolve conflicts in real time. 
Chen et al. (2016) used a three-degree-of-freedom non-
linear point-mass model to describe the multiple aircraft 
conflict. The conflict resolution solution derived by the op-
timal control method is generally a trajectory consisting 
of the consecutive positions of the aircraft, which differs 
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significantly from the scheme of ATCOs. The geometric 
optimisation methods are currently the most applied in 
engineering. The methods use geometric analysis and 
theoretical derivation based on information such as the 
aircraft’s current position and velocity vector (Gilles et al., 
2001; Carreno, 2002).

These aforementioned methods are successful, but in 
complex scenarios, it may take hundreds of seconds to 
solve the model (Wang et al., 2019), which will seriously 
reduce the timeliness of the solution. With the develop-
ment of artificial intelligence in recent years, scholars have 
began to use new algorithms, such as Deep Reinforce-
ment Learning (DRL) to resolve conflicts. According to the 
object of auxiliary decision-making, the current research 
can be divided into two categories: assisting ATCOs’ de-
cision-making and aircraft-assisted decision-making. The 
research on assisting ATCOs’ decision-making is as follows. 
Pham et al. (2019a, 2019b) considered the uncertainty in 
the real environment and used the Deep Deterministic Pol-
icy Gradient (DDPG) to train agents. They used Dog Leg 
manoeuvres to resolve conflicts. Tran et al. (2020) added 
a similarity index to the reward function to measure the 
similarity between the conflict resolution schemes given by 
ATCOs and the agent. Through this kind of reward shap-
ing, the conflict resolution scheme given by the trained 
agent was similar to that given by the human controller. 
Based on the background of free flight, Wang et al. (2019) 
considered the turning radius of the aircraft and used the 
Actor-Critic algorithm to train agents. They used a two-di-
mensional heading adjustment strategy to resolve conflicts 
and limit the number of changes in heading angle. Based 
on the existing air traffic control (ATC) mode, Sui et al. 
(2022) used the Independent Deep Q Network to train 
multi-agent to solve multi-aircraft conflicts. They used 
speed, altitude, and heading adjustment to resolve con-
flicts and limit the number of conflict resolution actions. 
The research on aircraft-assisted decision-making includes 
the following. Brittain and Wei (2021, 2022) established 
a deep multi-agent reinforcement learning framework to 
maintain the autonomous interval of aircraft and ensure 
that different numbers of aircraft pass through an en route 
sector without conflict. In the paper (Brittain & Wei, 2021), 
their framework used PPO that incorporated a long short-
term memory network to ensure the model’s effectiveness 
when the number of aircraft changes. The authors of paper 
(Brittain & Wei, 2022) proposed a scalable autonomous 
separation assurance framework to guide aircraft flying 
through a high-density airspace sector. Ribeiro et al. 
(2020a, 2020b) considered the UAV operating environment 
and used the combination of the DDPG and the Modified 
Voltage Potential method to improve the conflict resolution 
ability of UAVs under high-density airspace.

The currently proposed DRL-based approach capable 
of assisting ATCOs with conflict resolution has the follow-
ing limitations: 1) The study did not use the actual airspace 
environment, which differs from the actual situation (Pham 
et al., 2019a); 2) Less consideration of regulatory rules. The 
method is based on the assumption of free flight (Wang 

et al., 2019). Currently, most countries still fly according to 
the fixed route; 3) Focusing more on the conflicting aircraft 
itself and ignoring the impact on the movement of the 
neighbouring aircraft (Pham et al., 2019a).

Given the limitations of existing methods, this paper 
studies the conflict resolution strategy in realistic airspace 
scenarios with the DRL method. The DRL environment is 
developed based on the Air Traffic Operations Simulation 
System (ATOSS), a high-fidelity airspace simulation system, 
to ensure that the training environment is close to the ac-
tual airspace environment. The proposed DRL method al-
lows for the resolution of two-aircraft conflicts at the same 
level and across levels in the current airspace operating 
mode using the three daily adjustment methods currently 
used by controllers while considering the neighbouring 
aircraft. This approach is currently an assisted decision-
making technique and cannot fully replace ATCOs. The 
controller acts as a monitor. When the model produces the 
correct decision, the controller lets it execute it; otherwise, 
the controller initiates a manual decision.

1. Conflict resolution model

A flight conflict in this paper is defined as a case in which 
the horizontal separation between two aircraft is less than 
10 km and the vertical separation is less than 300 m at a 
particular time. The conflict resolution methods mainly in-
clude altitude adjustment, speed adjustment, and heading 
adjustment according to the control operation regulations 
(Ministry of Transport of the People’s Republic of China, 
2017). Altitude adjustment is 300 m, speed adjustment is 
10 kt and heading adjustment using route offsets. The off-
set turning angle is 30 degrees, and the offset distance is 
6 nm from the original route.

Referring to the review (Ribeiro et al., 2020c), tactical 
conflict resolution in this study is defined as resolving a 
two-aircraft conflict that exists after 5 min. Therefore, the 
duration of the conflict resolution process is 5 min. As-
sume that every 1 min is a resolution period; that is, every 
1 min, one aircraft in a two-aircraft conflict can be given a 
command or no command. The above settings allow the 
issuing of commands to be discrete to match the existing 
ATC mode. The resolution period can also be adjusted to 
suit a particular ATC mode.

The airspace is considered the environment, the air-
space situation is considered the state, and the time to 
resolve the two-aircraft conflict is set as t. The controller 
agent generates an action At (i.e. command) for conflict 
resolution based on the state St and has the aircraft ex-
ecute the command. The agent obtains the state St+1 after 
a resolution period (1 min) and is rewarded with Rt+1 by 
simulation extrapolation. The subsequent interaction pro-
cess is the same as this. In the two-aircraft conflict reso-
lution process, St+1 and Rt+1 depend only on St and At 
and not on earlier states and actions, that is, the process 
satisfies the Markov property. Therefore, the conflict reso-
lution model can be modelled as a discrete-time Markov 
Decision Process (MDP), and the DRL method can be used 
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to solve the MDP. The MDP is represented by the tuple 
γ   , , , , , where   is the state space,   is the ac-

tion space,   is the state transition function,   is the 
reward space, and g is the discount factor. g is described 
in section 2.2.

1) State space
After a two-aircraft conflict is detected, a 200×200×6 km 

cuboid airspace centred on the conflict point (the mid-
point of the line connecting the positions of the two con-
flicting aircraft) is used to describe the state of the current 
conflict scenario. Then the cuboid airspace is discretized to 
describe the state; that is, the large airspace is divided into 
8000 small cuboids of 10×10×0.3 km. According to Patera 
(2007), the small cuboid is equivalent to creating a small 
protection space for the aircraft. The spatial discretization 
process is shown in Figure 1. 

Figure 1. The spatial discretization process

During training, it is assumed that once a conflict oc-
curs, the episode will be ended. Therefore, there is at most 
one aircraft in a small cuboid. In summary, the state St is 
given by Eq. (1) and can be represented as a vector:

( )= 1 2 8000, , ...,t t t
tS Info Info Info ,  (1)

where t
iInfo  represents the airspace information of the ith 

small cuboid at time t. If there is an aircraft in the ith small 
cuboid at t, then:

( )= _ , , , , , , ,t
iInfo call sign type lng lat alt vspd hspd heading , (2)

where _call sign , type , lng , lat , alt , vspd , hspd , and 
heading are respectively the call sign, type, longitude, lati-
tude, altitude, climb rate, horizontal speed, and heading of 
the aircraft in the ith small cuboid. If the ith small cuboid 
has no aircraft at t, then t

iInfo  is an all-0 vector. Minimum–
maximum normalization is applied to St.

2) Action space
The action space is the collection of the conflict resolution 
commands that the ATCOs can adopt in actual control op-
erations. The commands (i.e. actions) for conflict resolution 
are shown in Table 1.

3) State transition function
Due to the complex motion of the aircraft, the MDP in 
this study does not have an explicit state transition func-
tion. The process of state transfer is essentially a trajectory 
prediction process. The aircraft trajectory predictions are 
calculated strictly based on the data provided by the Base 
of Aircraft Data (BADA) database.

4) Reward function
Optimal resolution strategy. The design of the reward 

function considers the following factors.
a) From the perspective of the time of conflict 

resolution, it should be applied as shown in Eq. (3), where 
i indicates that the conflict is successfully resolved at thi  
minute, timep  and timeq  are parameters, timep  is the maxi-
mum possible reward in the equation, and timeq  is used to 
control the reward magnitude of action. The shorter the 
resolution time, the higher the reward for the controller 
agent. 

= −1 time timer p q i . (3)

b) The action adjustment magnitude given by the 
model is expected to be small so that the aircraft can 
achieve a conflict resolution within a small magnitude. Ac-
cording to the adjustment method used, there are three 
cases.

An altitude adjustment action is rewarded in a linearly 
decreasing manner as shown in Eq. , where Hcur indicates 
the selected altitude-adjusted action value and Hmax 
indicates the maximum value of the altitude adjustment 
action, paltitude and qaltitude are parameters, paltitude is used 
to control the range of maximum reward value, and qaltitude 
is used to adjust the range of reward value change. The 
smaller the altitude adjustment, the higher the reward for 
the controller agent. This is because smaller altitude adjust-
ment can save aircraft fuel and reduce the level of discom-
fort for passengers.

= − ×cur
2 altitude altitude

max

H
r p q

H
. (4)

Similarly, the reward for a speed adjustment action is 
shown in Eq. (5) , where Vcur indicates the selected speed-
adjusted action value and Vmax indicates the maximum 
value of the speed adjustment action, pspeed and qspeed are 
parameters, pspeed is used to control the range of maxi-
mum reward value, and qspeed is used to adjust the range 
of reward value change.

= − ×cur
3 speed speed

max

V
r p q

V
. (5)

Table 1. The adjustment values

Resolution Method Resolution action Adjustment value

Altitude adjustment Climbing or Descending, m 300, 600, 900, 1200, 1500
Speed adjustment Acceleration or Deceleration, kt 10, 20, 30
Heading adjustment Direct to the next waypoint

Right or Left offset, nm
NULL

6



180 D. Sui et al. Conflict resolution strategy based on deep reinforcement learning for air traffic management

The heading adjustment range is fixed and the reward 
function for a single action of heading adjustment is as 
shown in Eq. (6), where pheading and qheading are rewards 
for different heading adjustment actions.

= 


heading
4

heading

, if lateral offset
, if direct to next waypoint

p
r q . (6)

c) When multiple commands are given in the same 
scenario, the difference between the adjacent commands 
of the same type should be as small as possible. Accord-
ing to the adjustment method used, there are two cases. 

The reward for the difference in altitude adjustment 
is as shown in Eq. (7), where Hcur is the value of the 
altitude adjustment action selected at the current time 
and Hpre is that selected at the previous moment, Hmax 
is the maximum value of the altitude adjustment action, 
and Hmin is the minimum value of the altitude adjustment 
action. palt and qalt are parameters, palt is used to control 
the range of maximum reward value, and qalt is used to 
adjust the range of reward value change. The smaller the 
adjacent altitude adjustment, the higher the reward.

−
= − ×

−
cur pre

5 alt alt
max min

H H
r p q

H H
. (7)

The reward for the difference in speed adjustment is 
as shown in Eq. (8), where Vcur is the value of the speed 
adjustment action selected at the current time and Vpre 
is that selected at the previous moment, Vmax is the 
maximum value of the speed adjustment action, and Vmin 
is the minimum value of the speed adjustment action, pspd 
and qspd are parameters, pspd is used to control the range 
of maximum reward value, and qspd is used to adjust the 
range of reward value change.

−
= − ×

−
cur pre

6 spd spd
max min

V V
r p q

V V
. (8)

d) If conflicts occur within the 5 min resolution time 
horizon, or if the two-aircraft conflict is not successfully 
resolved within 5 min, the reward value is as shown in 
Eq. (9), where pfaile is a negative value.

=7 failer p . (9)

In summary, the total reward value for conflict 
resolution is given by Eq. (10).

=

 
 =
 
 
∑

7

1

/100i
i

R r . (10)

5) State termination
The controller agent takes 1 min as the resolution 

period to continuously generate actions to resolve con-
flicts until a terminal state is reached. The terminal state 
is reached in two conditions. One condition is that the 
two-aircraft conflict is resolved successfully, that is, there is 
no conflict between the two conflicting aircraft in the two-
aircraft conflict, and there is no conflict between the two 
conflicting aircraft and the neighbouring aircraft within the 
first 5 minutes to the last 5 minutes of the two-aircraft 

conflict. The other condition is the failure of conflict reso-
lution; that is, until the last resolution period, the condition 
for successful conflict resolution is still not met, or there 
are conflicts within the 5 min resolution time horizon.

2. Model training and solving strategies

2.1. Deep Q network
The state and action data dimensions are significant in the 
conflict resolution problem, so the Deep Q Network (DQN) 
is chosen to train the controller agent. DQN combines a 
deep neural network with the Q-learning algorithm. The 
algorithm uses two key technologies: experience replay 
and double network structure. Figure 2 shows the prin-
ciple of DQN.

Figure 2. The principle of DQN

The experience replay solves the problems associated 
with sample correlation and non-static sample distribu-
tion. In the double network structure, there are two neural 
networks. The current value network is used to obtain the 
current value of Q, and the network parameters are up-
dated during each timestep. The target value network has 
relatively fixed parameters and is used to obtain the Q 
target value, of which parameters are updated every N 
timesteps.

2.2. Training process
The training goal of DQN algorithm is that the loss func-
tion of the target output and the actual output error is 
minimized. DQN uses the target Q value calculated from 
the reward value and the Q value. DQN uses a Q function 

( )ω, ;Q s a  with parameters ω to approximate the value 
function. When the number of iterations is i, the loss func-
tion is as Eq. (11) and Eq. (12) , where DQN

iy  indicates the 
target Q value, ωi  represents parameters of the current 
value network and −ω  represents parameters of the target 
value network.

( ) ( ) ( )( )′
 

ω = − ω 
 

2

, , , , ;DQN
i i i is a r sL E y Q s a ; (11)

( )−′ ′= + γ ω
,

max , ;DQN
i a

y r Q s a . (12)
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The goal is to solve two-aircraft conflicts, it was decided 
to let the current value network of DQN select the aircraft 
performing the resolution action in the two-aircraft con-
flict. The structure of the current value network is shown 
in Figure 3. The numbers in brackets represent the number 
of nodes in a layer. ‘FC’ represents a fully connected layer. 
The network is a fully connected neural network with two 
hidden layers, each with 64 nodes. The dimension of the 
data output from the current value network is 58, twice the 
action space size. The current value network and the target 
value network have the same structure.

Figure 3. The structure of the current value network

Where 
1aQ  to 

29aQ  are the Q value of the action cor-
responding to aircraft A, and 

30aQ  to 
58aQ  are the Q value 

of the action corresponding to aircraft B. Action ai is the 
same as action ai+29 . DQN uses the ε – greedy policy to 
select one of the 58 Q values to select the action and the 
aircraft required to perform that action. According to the 
principle of DQN, the specific training process of the con-
flict resolution strategy is shown in Table 2.

3. Experiment and result analysis

3.1. Training experiment
The model was trained on a computer with 32 GB of pro-
cessor RAM. The flight plan data within China’s airspace on 
1 June 2018 are selected as the input, and random time 
changes are added to change the start times of the flight 
plans. A realistic airspace operating environment based 
on the ATOSS as the DRL environment for training the 
agent was developed. The ATOSS also does the state tran-
sition. Developed in our laboratory, the ATOSS combines 
an airspace database with a BADA-based motion simula-
tion engine to simulate the aircraft’s operational posture. It 
calculates aircraft acceleration, speed, turn rate, and climb 
and descent rate based on parameters such as force and 
fuel consumption during each phase of flight. It predicts 
trajectories with airspace operating rules, such as aircraft 
altitude limits.

The ATOSS for airspace situational simulation to gen-
erate conflict scenario samples was used. During the sim-
ulation, the flight levels of the aircraft were all between 
6000 m and 12000 m, with the flight level of each aircraft 
depending on its flight plan. When generating a conflict 
scenario sample, a 200×200×6 km cuboid airspace in Chi-
na is randomly selected, as shown in Figure 4, and the 
aircraft are randomly loaded in this airspace. There may be 
multiple conflicts in a conflict scenario sample. However, 
the focus was only on one of the two-aircraft conflicts (i.e. 
the conflict that the controller agent needs to resolve). At 
the time of the two-aircraft conflict in a given conflict sce-
nario sample, there are between 10 and 30 aircraft in the 
cuboid airspace. The simulation generates 17865 conflict 
scenario samples. 1000 samples were taken for testing; the 
remaining samples are for training.

Table 2. DQN algorithm flow for training the agent

Algorithm: DQN algorithm for training the agent
1: Initialize the experience replay pool D. Initialize the action value function Q with random weight θ. 
2: Initialize the target Q network with weight ω– = ω.
3: Randomly select the conflict scenario, and initialize the state s0.

4: Use the ε – greedy strategy to select the action at from the action space or
 

( )= ωargmax , ;t a ta Q s a .

5: Execute command the action at. Receive the feedback rewards rt and the new state of the aircraft st+1.

6: Save the conflict sample
 

( )+1, , ,t t t ts a r s  in the experience replay pool D.

7: Randomly extract a conflict sample ( )+1, , ,j j j js a r s  from the experience replay pool D.

8: If the + 1j  step is the final state, then =j jy r , otherwise, ( )−
+ ′= + γ ω

, 1max , ;j j j
a

y r Q s a

9: Calculate the loss function
 

( ) ( ) ( )( )′

 
ω = − ω 

  

2

, , , , ;DQN
i i iis a r sL E y Q s a .

10: Update ( )( )− ω
2

, ;j j jy Q s a  based on the gradient descent method.

11: Update the target Q network every 500 steps, where ω– = ω.
12: Loop. Until all training steps are completed.
13: Loop. Until all training episodes are completed.
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The hyper-parameter design of the algorithm is shown 
in Table 3, and the parameter values of the reward function 
are shown in Table 4.

1) Stability and sensitivity experiments
In this study, the average reward value and average 

maximum Q value are used to analyze the stability of the 
model. Considering that different values of parameters in 
Table 3 and Table 4 have different training results, in the 
experiment, different parameters were used for training, 
and each group was trained for 15000 episodes.

(a) Learning rate
As shown in Figure 5a, when the learning rate lr = 0.001, 

the reward value curve generally showed an upward trend, 
but the stability of the model is poor. When the learning 
rate lr = 0.0005, the convergence speed of the reward val-
ue is unchanged, and the convergence and stability of the 
algorithm model are better; the maximum Q value curve 
shows that it starts to go down and reaches convergence 
ahead of time, and the conflict resolution strategy score is a 
little higher at this time. Therefore lr is set to 0.0005.

(b) Discount factor
As shown in Figure 5b, when the discount factor is 0, 

the aircraft is more sensitive to short-term rewards, so its 
average reward value will reach the stable value earlier. 
As the value of the discount factor increases, the aircraft 

balances the long-term and short-term rewards, so it con-
verges slower. As observed from the maximum Q value, 
the model finally converges with better stability and less 
data fluctuation when the discount factor becomes larger. 
The discount factor’s value does not significantly impact 
the final training results. However, from a theoretical point 
of view, we still set γ = 0.99 to ensure that the controller 
agent is more focused on the long-term reward, as the 
agent needs to resolve the two-aircraft conflict after 5 min.

Figure 4. Schematic diagram of conflict detection simulation 
scenario

Table 3. Hyper-parameters of DQN

Algorithm parameters Parameters value Algorithm parameters Parameters value

Learning rate 5e – 4 Exploration final episode 0.02
Total training steps 30000 Discount rate 0.99
Replay pool size 50000 Target network update frequency 500
Batch size 16 Exploration fraction 0.1

Table 4. Parameter values of the reward function

Reward parameters Value Reward parameters Value Reward parameters Value

ptime 120 palt 0 pspeed 50
qtime 20 qalt 10 qspeed 60
paltitude 50 pspd 0 pheading 25
qaltitude 50 qspd 10 qheading 15
pfaile –100 – – – –

Figure 5. The training curve with different learning rate and 
different discount factors

(a)

(b)
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(c) Reward parameters pfaile
As shown in Table 4, multiple parameters are involved in 

the reward function. Due to the lack of a unified standard 
for setting the reward function, these parameter values are 
the results of multiple tests. Many of these parameters are 
set to make the training result better, such as the parameters 
to adjust the range of altitude or speed. However, setting 
the reward parameter value of the conflict resolution failure 
is more critical in measuring the overall resolution effect. 
Therefore, this part takes pfaile as an example for test analy-
sis, and other parameters can be tested similarly through 
this process. As shown in Figure 6, when the parameter value 
is set to –50, –100, and –150, the curve of the reward value 
and the maximum Q value is shown in the Figure 6. It can be 
seen from the Figure 6 that when the value has small fluc-
tuations, the final convergence and stability of the model are 
not significantly affected, indicating that the training model 
has a certain degree of robustness. However, when the pa-
rameter value is set to –100, the average reward value of it 
is higher than the other two cases, so choose –100 as the 
final parameter value as shown in Table 4.

2) Successful resolution rate
The successful resolution rate refers to the proportion 

of the number of conflict scenario samples successfully 
resolved in the number of test samples. A conflict scenario 
sample is successfully resolved when and only when the 
two-aircraft conflict in this sample is successfully resolved 
(see ‘State termination’ in section 1). This study randomly 
selects 1000 samples for testing and sets different training 
steps to train the conflict resolution strategy model. The 
successful resolution rate analysis of the model trained 
with different steps is shown in Table 5. It can be seen 
that the successful resolution rate gradually increases as 
the number of training steps increases.

3.2. Testing experiment
To verify the effectiveness of the strategy given by the 
conflict resolution strategy model, that is, whether it con-
forms to the actual air traffic control operation, a total of 
100 conflict scenario samples are designed for analysis in 
this section. According to the Doc. 4444 (International Civil 
Aviation Organization, 2016), in 100 samples, there are 
15 same-route conflicts, 50 opposite-route conflicts, and 
35 cross-route conflicts. When using DQN, all 100 conflict 
scenario samples are successfully resolved, and the aver-
age computation time for a resolution strategy is 1.9549e 
– 3s. The specific resolution strategy is analyzed from two 
aspects: flight safety and the rules of conflict resolution.

1) Flight safety
Flight safety is reflected by the closest distance between 

two conflicting aircraft. Figure 7 shows the closest points’ 
horizontal and vertical distance distribution in all 100 test-
ing scenarios. In all scenarios, at least one separation of the 
minimum horizontal and vertical directions is to meet safety 
requirements, which satisfies the requirements of flight safety.

Figure 6. The training curve with different reward parameter 
values

Table 5. The successful resolution rate of the model trained with different steps

Training Steps Number of successes Successful resolution rate, % Average reward

1,000 510 51.0 –0.854
5,000 979 97.9 1.301
10,000 992 99.2 1.375
20,000 1000 100 1.387
30,000 1000 100 1.389

Figure 7. The distance of the closest point between the two aircraft
(a) (b)
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The left Figure 7a shows the distribution of horizontal 
distance when the vertical interval between aircraft is the 
smallest; that is, the aircraft is at the same flight altitude. 
It can be seen from the Figure 7a that aircraft meet 
the distance constraint of more than 10 km, and most 
aircraft have enough intervals. The right Figure 7b shows 
the distribution of vertical distance when the horizontal 
interval between aircraft is the smallest. As seen from the 
Figure 7b, most aircraft are at intervals of 300 m, which 
satisfies the vertical limit.

2) The rules of conflict resolution
In the actual operation, the rules for conflict resolution 

can be summarized as follows: under the premise of 
ensuring successful resolution, command actions should 
have good controllability, high security, and a minor 
adjustment range. As shown in Figure 8, the commands of 
altitude resolution are distributed from 300 m to 1200 m. 
According to the regulations for conflict resolution, the 
altitude resolution strategy satisfies the requirements of 
conflicting resolution rules.

When a speed adjustment occurs, the range is 
distributed from 10 kt to 30 kt. For speed adjustment, if 
the conflict can be resolved by taking small actions, try 
to adjust with more minor actions. Therefore, as shown in 
Figure 9a, the speed adjustment strategy satisfies conflict 
resolution rules. From good controllability, the offset route 
is better than flying directly to the next waypoint strat-
egy. The experimental results shown in Figure 9b indicate 
that the model chooses the route offset strategy in most 
cases for heading adjustment. The route offset strategy 
is selected 20 times, and the flying directly to the next 
waypoint strategy is selected seven times. Therefore, the 
heading adjustment strategy also satisfies the rules of con-
flict resolution.

Among the 100 conflict scenario samples resolved, 57 
were resolved by altitude adjustment, 16 by speed adjust-
ment and 27 by heading adjustment. The overall distri-
bution is consistent with that of the resolution strategies 
used by ATCOs in actual control operations. In other words, 
the controller will first select the altitude adjustment, then 
the heading adjustment and finally the speed adjustment. 
However, the preference for selecting commands also var-
ies from sector to sector and from controller to controller, 
and this study considers only common situations within 
Chinese airspace. The preference can be changed by ad-
justing parameters in the reward function regarding alti-
tude, speed and heading adjustment.

3.3. Discussion
Tactical conflict resolution is an essential part of achieving 
intelligent ATC. In this study, the controller agent is trained 
using DQN to assist ATCOs in conflict resolution, and ex-
perimental proofs are performed.

The DRL environment was developed based on the 
ATOSS to interact with the controller agent. Realistic route 
structures and flight plans are used to ensure that the 
DRL environment approximates the actual airspace en-
vironment. Performance data for different aircraft types 
ensures that the solution fits the aircraft dynamics con-
straints. The agent uses actual controllers’ height, speed 
and heading adjustment to resolve conflicts. The closest 
distance between the two aircraft involved in the conflicts 
is consistent with flight safety requirements. Regarding 
conflict resolution rules, altitude adjustments are mostly 
300 m to 900 m to meet the requirement for minor adjust-
ments. Speed adjustments are mostly 10 kt, and heading 
adjustments are primarily chosen as route offsets to meet 
the requirement of good controllability. The controller 
agent achieves a 100% successful resolution rate without 
impacting the movement of the neighbouring aircraft. In 
addition, DQN has a significant advantage in computation 
time to meet the demand for real-time resolution.

The proposed conflict resolution method still requires 
improvements in reliability and robustness, for example, by 
optimising the solution and adapting to unique scenarios. 
However, as the core algorithm of the decision support 
system for conflict resolution, there is an automation chal-
lenge: as the reliability and robustness of the algorithm Figure 8. The distribution of the altitude adjustment

Figure 9. The distribution of the speed adjustment and the heading adjustment
(a) (b)
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increase, the less situational awareness the ATCOs have, 
and the less likely they are to take over manual control if 
the system gives an inappropriate scheme (Endsley, 2017; 
O’Neill et al., 2020). This is an important issue that needs 
to be investigated and addressed in the future when de-
signing conflict resolution automation.

In summary, the experimental results show that the 
DRL-based conflict resolution method can provide feasible 
suggestions for ATCOs to resolve conflicts.

Conclusions

This study establishes a two-aircraft conflict resolution 
model based on the MDP, and DQN is used to train the 
controller agent to obtain the conflict resolution strategy. 
Combining the experience of ATCOs, the reward function 
can make the behaviour of the agent after training can fit 
the existing ATC mode as much as possible. The testing 
experiments analyse the strategies the conflict resolution 
model gives in terms of flight safety and conflict resolu-
tion rules. It is demonstrated that the strategies given by 
the model are in line with the existing control regulations 
and the conventions of ATCOs. In addition, a success-
ful resolution rate of 100% can be achieved, considering 
neighbouring aircraft. Using the DRL method reduces the 
time required to obtain conflict resolution strategies and 
can quickly deal with conflicts in the sector. It offers the 
possibility to reduce the workload of ATCOs and increase 
airspace capacity.
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