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Article History: Abstract. This paper analyses the available mathematical models of flight simulators based on the Stewart 
platform. It was found that there is no model that describes the conditions for stable dynamic equilibrium 
operation of the Stewart platform as a function of a number of important motion parameters. In this context, 
a new physical model is proposed based on classical models of theoretical mechanics using the d’Alembert 
formalism, the concept of stable equilibrium of a mechanical system. This model mathematically separates 
the stable equilibrium of the flight simulator motion system from the general uniformly accelerated motion. 
The systems of equations obtained in the framework of the model connect the physical and geometrical pa-
rameters of the Stewart platform and make it possible to determine the reactions in the upper hinges of the 
platform support, the limit values of the position angles in the space of the base of the support of the Stewart 
platform, under which the condition of stable equilibrium operation of the Stewart platform is satisfied. The 
proposed physical model and the analytical relations obtained on its basis are of great practical importance: 
the operator controlling the operation of the Stewart platform-based flight simulator can control the range of 
parameters during training so as not to bring the flight simulator out of stable equilibrium.
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Introduction

A flight simulator is a device that artificially recreates the 
flight of an aircraft and its environment (Heintzman, 1996; 
Lapiska et al., 1993). In practice, a flight simulator is used 
for various purposes: pilot training, aircraft design and de-
velopment, and the study of their characteristics, includ-
ing stability and controllability. The Full Flight Simulator 
(International Civil Аviation Оrganization, 2015) Figure 1 
includes an aircraft cabin and consists of several intercon-
nected and interacting systems (flight dynamics, vision 
system, motion system, etc.).

 The motion system is one of the most important com-
ponents of the Full Flight Simulator. It conveys the feeling 
of being in a real, moving environment. To do this, the 
motion system must simulate the acceleration effects in 
all six degrees of freedom that the pilot experiences when 
moving freely in space. The modern motion system of full 
flight simulators usually uses a six degree of freedom mo-
tion system proposed by (Stewart, 1965) (Figure 1). With 
six degrees of freedom (three rotations along the pitch, 
roll and yaw axes and three translational movements along 
a vertical, transverse and longitudinal degree of freedom), 

the Stewart platform can perform a wide range of complex 
and combined movements within acceptable limits.

The six-stage Stewart platform is a spatial-kinematic 
system of six interconnected hydraulic actuators operating 
at angles of up to 70° relative to the vertical axis. Since the 
movements of the Stewart platform are generated by com-
bining the movements of multiple hydraulic actuators, the 
Stewart platform is also referred to as synergistic because of 
the synergy (mutual interaction) between the programming 
of the hydraulic actuators. Because the Stewart platform has 
six hydraulic actuators, it is also referred to as a hexapod (six 
legs). The six-leg Stewart platform is a kinematically parallel 
system. With it, positioning errors in serial kinematic chains 
do not tend to propagate additively across the chain links, 
so it is able to perform positioning tasks with high accu-
racy. In addition, the parallel structure naturally distributes 
the forces/torques of the hydraulic actuators, resulting in 
high dynamic performance. The design is resistant to tilt-
ing, twisting around the vertical axis and other unacceptable 
movements of the Stewart platform. The disadvantage of 
this design is the mutual interference of the hydraulic actua-
tors in redistributing the mass of the Stewart platform and 
the load acting on it to each hydraulic actuator.
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This significantly impairs operation and has a negative 
effect on the dynamic properties of the hydraulic drives. 
In order to eliminate this shortcoming, the power input of 
the hydraulic actuator and thus the power consumption 
must be significantly increased. The advantages of such a 
mechanism lie in the increased rigidity and compactness 
of the structure, the disadvantages in a possible loss of 
stability. The efficiency of a dynamic upright thus depends 
largely on the angular range of the mutual arrangement 
of the hydraulic actuators within which the stability of the 
robot is ensured. For the Stewart platform, the kinematic 
safety conditions must be met. The ratio between the sides 
of the upper and lower triangle as well as the length of the 
hydraulic actuators with the maximum extended and maxi-
mum retracted rod must be such that it is kinematically 
impossible to bring the Stewart platform into a dangerous 
position. The maximum available forces of the hydraulic 
actuators must also be sufficient to overcome the torques 
from the inertia forces of the Stewart platform in each of 
its positions (PPO “ERA”, 1983).

The design of the flight simulator is such that the cabin 
is hinged to Stewart’s moving platform. It is easy to see 
that such a mechanical linkage may be in a non-equilibri-
um state at certain angles of deviation of the hydraulic ac-
tuators from the stable initial state. This, in turn, can cause 
the entire structure of the simulator to tip on its side. For 
this reason, the question arises at what maximum permis-
sible angles of deviation from the initial equilibrium state 
the Stewart platform can remain in the equilibrium state.

Purpose of the study. Due to the high cost of Stewart 
platforms and the increasing demands on the accuracy of 
motion cueing, the problem of determining limiting pa-
rameters of the Stewart platform under which stable equi-
librium operation of the Stewart platform is possible is an 
urgent task. Therefore, the main objective of this study is 
to formulate and solve the dynamics problem: to estab-
lish the relationship between the responses of the upper 
hinges of the hydraulic actuators, the changing yaw, roll 
and pitch angles, and the maximum allowable angular de-
viations of the hydraulic actuators from the initial position 
of stable equilibrium.

1. State of arts 
Currently, the problem of motion analysis and control of 
the work of robots with 6 degrees of freedom (DOF) is 
important in various branches of mechanical engineer-
ing. These include industrial robotic manipulators (Šegota 
et al., 2020), robots that mimic the motion of motor vehi-
cles (Dymarek et al., 2014), and biorobots that simulate the 
motion of living beings (Huang et al., 2022). Robotic flight 
simulators, whose design is based on the Stuart platform 
with 6 degrees of freedom, play an important role in the 
training of pilots. Therefore, investigating the operation of 
the Stewart platform under different loading parameters is 
an important scientific and practical task.

The analysis of the publications on the simulation of 
the motion of the Stewart platform has shown that the 

existing works can be conditionally divided into the follow-
ing areas: the study of the problem of direct and inverse 
kinematics of the Stewart platform; refinement of the ge-
ometry of the Stewart platform; analysis of the dynamics 
6-DOF; development of numerical methods for solving 
nonlinear systems of kinematic equations of the 6-DOF; 
study of accuracy control, calibration, stability of the 6DOF 
operation.

The general theory of the Stewart platform is pre-
sented in the work of (Fichter, 1986). The direct kinematic 
solution and analysis of a Stewart platform is studied in 
the work of Nanua et al. (1989), Liu et al. (1993). The work 
of Petrescu et al. (2018) is devoted to the inverse prob-
lem of the motion kinematics of the Stewart platform. The 
dynamics of the Stewart platform has been studied in the 
works of Harib and Srinivasan (2003), Bingul and Karahan 
(2012), Lopes (2009), Leonov et al. (2014). Since the equa-
tions describing the operation of the Stewart platform 
are nonlinear, much attention is paid to the development 
of numerical algorithms to solve them. For example, the 
works of Nguyen et al. (1991), Yee and Lim (1997), Wang 
et al. (2009), Zhiyong et al. (2016), Sheng et al. (2006) and 
Dasgupta and Mruthyunjava (1996) provide algorithms 
for the numerical solution of the Stewart platform forward 
kinematics problem. The works of Dymarek et al. (2014), 
Yang et al. (2022) study the refined geometry problem for 
solving the direct 6DOF kinematics problem. Methods for 
Stewart platform accuracy control, sliding mode control 
and calibration are described in Zhuang et al. (1998), Chen 
and Fu (2013), Velasco et al. (2020), Ono et al. (2022) and 
Silva et al. (2022).

1.1. Use of the Stewart platform models in 
aviation
Motion cueing, which most closely resembles real flight 
conditions, is simulated by the Stewart platform (Figure 1). 
It consists of a simulator cabin rigidly connected to the 
base of the platform. The base in turn is pivotally attached 
to three pairs of hydraulic actuators that can simulate the 
spatial motion of the aircraft in six degrees of freedom. 

Figure 1. Full flight simulator with the Stewart platform
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Nowadays, all flight simulators are equipped with auto-
matic devices containing the equations of motion of a 
free aircraft, including the kinematics and dynamics of the 
motion.

In Scholten et al. (2020) a model for linear control of 
changes in kinematic parameters was considered and a 
block diagram of in-flight parameter control was pro-
posed. The works (Chandrasekaran et al., 2021; Scholten 
et al., 2020; Ahmed, 2012; Ahmad et al., 2021) are de-
voted to the issues of stable flight simulation. The authors 
(Chandrasekaran et al., 2021) developed a universal mod-
el of a flight simulator (Ground-based Variable Stability 
Flight Simulator) based on the optimization of a set of 
kinematic characteristics (angular velocity), aerodynamic 
force and moments. Different flight modes (Dutch-Mode, 
Roll-Mode), static longitudinal stability and control were 
investigated. In Scholten et al. (2020) a system for flight 
simulation with variable stability is presented. Two experi-
ments were conducted: one experiment was performed on 
a stationary flight simulator, the second on a Cessna Cita-
tion II. The simulation experiment showed the difference 
between the full model including the actuator and the 
INDI (Incremental Nonlinear Dynamic Inversion) controller.

Longitudinal stability of a flight model using MATHLAB/
SIMULINK was studied by (Ahmed, 2012), where the con-
dition was verified. The evaluation of stability parameters 
for a wide-body aircraft using a computer was carried out 
by (Ahmad et al., 2021). In particular, the calculation of 
airfoil characteristics and aerodynamic coefficients was 
performed analytically and numerically, and the verifica-
tion of stability conditions was an intermediate element in 
the calculation. A similar model for simulating a helicopter 
flight is presented in Pausder et al. (1992), in which the 
feedback loop is implemented based on a linear model 
whose variables are the components of velocity, angular 
velocity, and angular acceleration. In Das and Kumpas 
(2019), in addition to kinematic relations, the mathemati-
cal model of helicopter flight simulation uses force and 
torque equations that account for the inertial properties 
of the system. In Sapunov and Proshin (2011), a general-
ized simulation model of an nth-order dynamical system is 
proposed that describes the formation of control laws in a 
closed system by the motion of a vector of controlled co-
ordinates, including components of velocity, acceleration, 
and overload. The above analysis of simulation on flight 
simulators (Stewart platforms) does not touch the issue of 
stable equilibrium operation of the Stewart platform itself 
as a mechanical system. In fact, at certain angles of the 
position of the lifting jacks, which are the basis for fixing 
the simulator, an unstable equilibrium condition and an 
unforeseen “blocking” of the Stewart platform on one of 
the sides may occur. Today there is a mathematical theory 
of stability motion offered by Lyapunov (Malkin, 1966; Bar-
bashin, 1970). However, this theory studies only the local 
stability of the mathematical solution in the presence of 
small changes in the system parameters. In other words, 
in the language of modern mathematical analysis, Lyapu-

nov theory examines the proposed solution, often without 
even finding it, for uniform convergence as a function of 
many variables. For example, in Andrijevskij et al. (2017) 
the direct and inverse problem of the Stewart platform 
operation is considered in terms of the change of lengths 
of hydraulic actuators, the equations of motion for forces 
and moments are written, and the moments of inertia 
of the system are considered. To verify the local stability 
of the motion of the mechanical system, the Lagrange-
Dirichlet theorem was applied. Based on this system, the 
relationship between the feedback coefficient G and each 
parameter of the problem was determined. The feedback 

20,5867 cG mgz l−> is introduced to control the operation of 
hydraulic cylinders. However, from the above inequality, 
it is clear that not all physical motion characteristics are 
included in the stability criterion for the Stewart platform 
motion. And curiously, the conditions for the equilibrium 
state of the platform are not directly stated in the paper. 
The second approach, the study of asymptotic stability 
based on Lyapunov’s stability theory, allows to study only 
small deviations from the stable state (which, again, is not 
specified in the work in any way) of the lengths of the 
hydraulic actuators. And now what? But does such analysis 
give an answer to the question: what are the conditions of 
physical equilibrium of the platform depending on the roll, 
pitch and yaw angles? They are not included in any of the 
articles analyzed above.

Another approach to the study of the stability of 
Stewart platform is based on the analysis of the general 
equations of motion of a mechanical system, built on the 
equations of analytical mechanics and described in (Abra-
mov & Mukharlamov, 2011). The essence of the proposed 
model is that real mechanical connections are replaced 
by program connections with disturbances. In this way, 
the influence on the operation of hydraulic actuators is 
studied and the parameters for their stable operation are 
selected. As in Malkin (1966), Barbashin (1970), the stabil-
ity is considered asymptotically. However, nothing is said 
about the equilibrium stability of the mechanical system 
with six degrees of freedom as a whole, and the task is 
not even posed. As can be seen from the analysis of the 
above works, as well as from the available review articles 
by Markou et al. (2021), He et al. (2022), little attention 
has been paid to the issues of a stable equilibrium state of 
the operation of the Stewart platform mechanical system. 
Thus, in the work of Markou et al. (2021) only a simplified 
model of the equilibrium state is described: a static equi-
librium state is considered. Equations for zero forces and 
torques relative to one of the hinge points are written (see 
Markou et al., 2021: Part 3. Equilibrium equations, equa-
tions 2–11). The authors of this paper write “...It should 
also be noted that the motion of the structure is very slow 
and therefore the behavior of the system is assumed to be 
static...”. After that, only the conditions for a static equilib-
rium state are given: the principal torque and the principal 
vector of forces are equal to zero. However, the paper says 
nothing about how the problem is solved in the case of 
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the dynamic behavior of a mechanical system. The paper 
does not provide specific correlations between the maxi-
mum allowable deflection angles of hydraulic actuators as 
a function of the specified weight of the platform and the 
yaw, roll, and pitch angles. It can be concluded that there 
is currently no dynamic model of the stable dynamic equi-
librium of the Stewart platform that determines the limit 
values for the position angles of the hydraulic actuators 
at which the conditions for the equilibrium of the 6DOF 
platform are met.

At the same time, for practical purposes, it is important 
to know both the solution of the equilibrium motion prob-
lem of a mechanical system and the range of parameters 
that ensures the stability of the equilibrium of the entire 
six-degree-of-freedom mechanical system, not just the hy-
draulic actuators. In other words, the dynamic-physical sta-
ble equilibrium of the mechanical system with six degrees 
of freedom as a whole was under the scientific interest.
Such a model has not existed before. The authors of this 
paper have posed and theoretically solved the problem of 
determining the limiting parameters of the stable equi-
librium of Stewart platform of the 6DOF. A closed system 
of equations was established, which allows to determine 
the limiting angles for the position of the upper hydraulic 
actuators depending on the weight of the aircraft section, 
as well as the pitch, roll and yaw angles at which stable 
equilibrium operation of the Stewart platform is possible.

2. Model of stable operation of the Stewart 
platform. Quasi-static approach 

2.1. Physical model of stable equilibrium
To understand the idea of the quasi-static approximation, 
the classical problem of theoretical mechanics is consid-
ered: the motion of a rigid body along a horizontal surface 
(Figure 2) under the action of a force F. It is known that the 
body is additionally acted upon by gravity, the force of the 
normal reaction of the support, and the force of Coulomb 
friction. If the Cartesian coordinate system is introduced, 
the vertical projections of the gravity force and the normal 
force cancel each other out. The situation is quite different 
in the horizontal direction of motion: to start the motion, 
a minimum force is required to move the body from its 
place. In mechanics, this force is called the static frictional 
force, the overcoming of which in this case sets the body 

in a rectilinear translational motion. When the force acting 
on the body exceeds the static frictional force, this results 
in acceleration. It is known from theoretical mechanics that 
the stable behavior of the body is related only to the com-
pensation of the force when it is close to the resistance 
force, in this case the Coulomb friction force. 

The above example leads to follow the idea. The ques-
tion of the stable state of equilibrium of the Stewart plat-
form must be connected with those limit values of forces 
and torques which correspond to the reactions of the hy-
draulic actuators and reactive torques. If the active forces 
in the system exceed the reactive forces, the Stewart plat-
form may move with acceleration. In this case, the excess 
component of the active forces F



 is used to produce 
accelerated motion:

cF F F ma= − =
  



 . (1)
In this work we will not study the component, since we 

are interested only in those limit values of the forces in hy-
draulic actuators for which the condition of the equilibrium 
state of the Stewart platform is satisfied. And these limit 
values correspond to certain values of roll, pitch and yaw 
angles as well as weight of the simulator space. It follows 
that the active forces in the upper joints of each of the 
three pairs of hydraulic actuators can be conditionally di-
vided into two components: the first is responsible for the 
reaction 1 2 3, ,R R R

  

of the mechanical system, the second 

1 2 3, ,F F F
  

   for the accelerated motion:

1 1 1 2 2 2 3 3 3, ,F R F F R F F R F= + = + = +
        

   . (2)

Based on Eq. (2), Newton’s the 2nd law can be formu-
lated in the following way:

1 1 2 2 3 3R F R F R F P ma+ + + + + + =
      



   , (3)

where P


, a


 is the weight of the simulator cabin together 
with the base of its attachment and the acceleration of the 
system center of mass. From the above:

1 2 3F F F ma+ + =
  



  ,

1 2 3 0R R R P+ + + =
   

. (4)

As for the torque generated in the system, the reactions 
1 2 3, ,R R R
  

together with gravity generate mutually balanc-
ing torques, and the increments of the forces 1 2 3, ,F F F

  

    
generate torque. Together they form the main vector of 
the torque M



:

R F PM M M M+ + =  



   

, (5)

where 

1 2 3 ,R R R R= + +
   

1 2 3F F F F= + +
   

    .

Since the conditions of a stable equilibrium are under 
interest, it follows from Eq. (5):

0R PM M+ = 

 

. (6)

Figure 2. To the explanation of the body motion stability
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If the Stewart platform moves with infinitesimal ac-
celeration, then such motion occurs at nearly constant 
velocity. And the system of Equations (4)–(6) is indeed a 
quasi-static condition for a stable equilibrium state. If con-
ditions (Equations (4)–(6)) are satisfied, the Stewart plat-
form will not tip over because the overturning moment 
and the resulting forces are zero.

2.2. Projection of forces and moments
In the search for a concrete mathematical implementa-
tion of the physical model proposed above, it has become 
apparent that the earth normal and the associated coor-
dinate systems are the most suitable for carrying out the 
projection onto the axes that will give the desired result. 
It is assumed that each of the two hydraulic actuators 
(Figure 3a, Kompleksny trenazher; Simulator, n.d.) belong-
ing to one of the three pairs moves symmetrically, so that 
the guides of the hydraulic actuators of a pair form the 
sides of an isosceles triangle (Figure 3b). This means that 
the total reactions , 1,3iR i =



in the upper hydraulic actua-
tor joints are directed along the heights of the isosceles 
triangles drawn to the bases (the segments between the 
lower pairs of joints).

The reactions iR


 are located at a certain angle with 
respect to the mounting plane of the simulator cabin base. 
It is assumed that the angles between the corresponding 
reactions and the heights of an equilateral triangle, which 
is the simulator booth mounting base, are as follows:

1 2 3( , ) , ( , ) , ( , )a b cR h R h R h∠ = α ∠ = β ∠ = γ
  

. (7)

Without loss of generality, it is assumed that during 
operation vertex 1 is in the upper position and vertices 2 
and 3 are in the lower position with respect to the initial 
horizontal position of the mounting base of the hydrau-
lic actuator chamber (Figure 3b). Such an assumption is 
necessary for the uniqueness of the projection onto the 
axes of the associated coordinate system. Since all three 
vertices are equal, the triangle used to attach the simula-
tor chamber is equilateral; the symbolic designation of the 
vertices does not impose any additional constraints on the 
solution of the problem. 

The origin of the associated coordinate system 1 1 1OX Y Z  
in the center of the circle circumscribed around an equilat-
eral triangle – the base of the simulator chamber attach-
ment is chosen. Then, taking into account the projection 
on the axis, was gained the following:

{ }1 1 1 1

1 1 1

cos cos30 ; sin ; cos sin30

3 1cos ; sin ; cos ,
2 2

acsR R R R

R R R

= α α − α =

  α α − α 


 



{ }2 2 2 2

2 2 2

cos cos30 ; sin ; cos sin30

3 1cos ; sin ; cos ,
2 2

acsR R R R

R R R

= − β β − β =

 − β β − β 


 



{ }3 3 20 ; sin ; cosacsR R R= γ γ


. (8)

Much more important in force projection is the choice 
of a coordinate system for projecting the gravity of the 
compartment. If the gravity is projected of the compart-
ment onto the axes of the normal Earth coordinate system, 
then the only one component of the projection onto the 
vertical axis is obtained. This does not allow to establish 
a mathematical connection between the unknowns that 
must be determined in solving the problem. Therefore, in 
order to obtain mathematical dependencies related to the 
parameters of the physical system, it is useful to project 
gravity onto the axes of the associated coordinate system. 
It is known (Gorbatenko et al., 1969) that the transition 
matrix between the normal Earth coordinate system and 
the bound coordinate system has the following form: 

33

cos cos sin cos sin
cos sin cos sin sin cos cos cos sin sin sin cos

sin sin cos cos sin sin cos sin sin sin cos cos

 ϑ ψ υ − υ ψ
 = − γ ϑ ψ + γ ψ ϑ γ γ ϑ ψ + γ ψ
 γ υ ψ + γ ψ − γ ϑ − ψ ϑ γ + ψ γ  

,

(9)
where roll, pitch, and yaw angles are corresponding , ,γ ψ ϑ . 
The relationship between gravity components in normal 
earth and bound coordinate systems is as follows:

33 acsP A P=
 

, (10)

or in the form of a matrix: 
0

0
P

 
 −
 
  

= 33A
xacs
yacs

zacs

P
P
P

 
 
 
  

. (11)

After multiplication, the following equations are 
obtained to determine the unknown components

, ,xacs yacs zacsP P P :

a)

b)

Figure 3. Stewart platform in operation: (a) system of 6 
movable hydraulic actuators; (b) block diagram
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cos cos sin cos sin 0;xacs yacs zacsP P Pυ ψ + υ − υ ψ =

( cos cos sin sin sin ) cos cos
(cos sin sin sin cos ) ;

xacs yacs

zacs

P P
P P

− γ ψ υ + γ ψ + γ υ +

γ υ ψ + γ ψ = −

(sin cos sin cos sin ) sin cos
( sin sin sin cos cos ) 0.

xasc yasc

zasc

P P
P

γ ψ υ + γ ψ − γ υ +

− γ υ ψ + γ ψ =
. (12)

The system of Equations (12) using Cramer’s rule are 
solved. In order to do this, you must first calculate the 
determinant of the matrix 33A :

 

2
33

2

2

2

det cos cos cos ( sin sin sin
cos cos ) cos sin sin ( cos sin cos
sin sin ) sin (cos sin sin sin cos )(sin sin
cos cos sin ) cos sin cos (sin sin cos
cos sin ) sin cos cos sin sin (c

A = υ ψ γ ⋅ − ψ γ υ +

ψ γ + υ ψ γ × − γ υ ψ +
γ ψ + υ γ υ ψ + γ ψ γ υ×
ψ + γ ψ + υ ψ γ ⋅ υ γ ψ +
γ ψ − γ ψ υ ψ − ϑ⋅

2

2 2 2 2

2 2 2 3

2 2 2 2 2 2

os sin cos
sin sin )( sin sin sin cos cos ) cos cos
cos sin sin sin cos cos cos cos sin sin
cos cos cos sin sin sin cos sin sin cos
sin cos sin sin sin cos sin sin sin cos c

γ υ ψ +
γ ψ − ψ γ υ + ψ γ = − υ ψ×
γ ψ γ υ + υ ψ γ − υ ψ γ ×
ψ γ + υ ψ γ + υ γ γ ψ ψ +
υ γ ψ + γ υ ψ + υ ψ γ ψ

2 2

3 2

2 2 2 2 2

2 2 3

2

os
cos cos sin sin sin cos sin cos cos sin
sin cos cos sin

2cos cos cos sin sin sin cos cos sin sin
sin cos sin cos sin sin cos sin sin sin cos cos
cos cos sin sin sin cos sin

γ +
υ γ γ ψ υ ψ − γ υ ψ ψ −
υ γ ψ ψ =

− υ ψ γ ψ γ υ + υ γ + ψ γ +
υ γ + υ γ γ ψ ψ + υ ψ γ ψ γ +
υ γ γ ψ υ ψ − 2

3 2 2 2
cos cos sin

sin cos cos sin sin sin cos .
γ υ ψ ψ −

υ γ ψ ψ + γ υ ψ
(13)

Using the d’Alembert formalism, it is assumed that the 
fictitious inertial forces on the upper hinges of the cabin to 
keep the body balanced are exerted. The total effect of the 
forces on the upper hinges can be described as follows:

F R ma= +
 



. (14)
Thus, using the kinetostatic method, the force load on 

the upper hinges into the reactions of the bonds and the 
inertial force is divided. The inertial forces are responsible 
for the accelerated motion of the body, while the reac-
tions of the hinges are responsible for its stability: if it is 
assumed that the acceleration is negligible, then condi-
tion (Eq. (13)) actually turns into a quasi-static equilibrium 
condition for the base of the simulator cabin attachment. 
Based on Cramer’s rule for determining , ,

acs acs acsx y zP P P , 
the following relationships are obtained:

31 2

33 33 33

detdet det
, ,

det det detacs acs acsx y z
AA A

P P P
A A A

= = = . (15)

The necessary calculations are made:

1

0 sin cos sin
det cos cos cos sin sin sin cos

0 sin cos sin sin sin cos cos
A P

υ − υ ψ
= − ϑ γ γ ϑ ψ + γ ψ

− γ ϑ − ψ ϑ γ + ψ γ
=

2 2sin cos sin sin cos cos sin sin sinP P P− γ ϑ ψ + υ ψ γ − ϑ ψ γ . 

 
2

2 2

cos cos 0 cos sin
det cos sin cos sin sin cos sin sin sin cos

sin sin cos cos sin 0 sin sin sin cos cos
sin cos sin sin cos cos sin sin sin
cos cos ( sin sin sin cos cos )

cos si

A P

P P P
P

P

ϑ ψ − υ ψ
= − γ ϑ ψ + γ ψ − γ ϑ ψ + γ ψ =

γ υ ψ + γ ψ − ψ ϑ γ + ψ γ

− γ ϑ ψ + υ ψ γ − ϑ ψ γ
− υ ψ − ψ υ γ + ψ γ −

υ
2 2

n (sin sin cos cos sin )
cos cos (cos sin ) cos cosP P

ψ υ γ ψ + γ ψ =
− υ γ ψ + ψ = − υ γ

3

2

cos cos sin 0
det cos sin cos sin sin cos cos P

sin sin cos cos sin sin cos 0
sin (cos sin sin sin cos ) sin cos

( cos sin cos sin sin ) sin cos in
sin sin cos sin cos sin cos cos

A

P P
P s

P P

ϑ ψ υ
= − γ ϑ ψ + γ ψ ϑ γ − =

γ υ ψ + γ ψ − γ ϑ

− υ ψ υ γ + ψ γ − γ υ×
− γ υ ψ + γ ψ = − υ ψ γ −

υ ψ γ + υ ψ γ υ γ − 2sin cos in .P sγ υ ψ

 (16)

After these determinants are calculated, , ,
acs acs acsx y zP P P

can calculate with the Eq. (15).

3. State of the balance of forces
Since the conditions for the equilibrium of forces are invar-
iant with respect to the choice of coordinate system, hav-
ing found the projections of the components of gravity on 
the axes of the associated coordinate system and know-
ing the projections of the reactions in the upper joints, it 
is possible to write the conditions for the equilibrium of 
forces in the following form:

1 2 3

1 2 3

1 2 3

0,
0,
0.

xasc xasc ascx xasc

xasy ascy ascy yasc

ascz ascz ascz zasc

R R R P
R R R P
R R R P

+ + + =
+ + + =

+ + + =

 (17)

Considering the relation (Eq. (8)), the system of Eq. (17) 
can be written as follows:

1 2

1 2 3

1 2 3

3 3cos cos 0 ,
2 2
sin sin sin ,
1 1cos cos cos
2 2

xasc

yasc

zasc

R R P

R R R P

R R R P

α + β + = −

α + β + γ = −

− α − β + γ = −

 (18)

After substituting in , ,xasc yasc zascP P P  (Eq. (18)), the un-
knowns 1 2 3, ,R R R remain in this system of equations. They 
can also be calculated using Cramer’s rule:

1

3 cos 0
2
sin sin
1 cos cos
2 ,

3 3cos cos 0
2 2
sin sin sin
1 1cos cos cos
2 2

ascx

yasc

zasc

P
P

P
R

− β

− β γ

− − β γ
=

α β

α β γ

− α − β γ

2

3 cos 0
2
sin sin
1 cos cos
2 ,

3 3cos cos 0
2 2
sin sin sin
1 1cos cos cos
2 2

xasc

yasc

zasc

P
P

P
R

α −

α − γ

− α − γ
=

α β

α β γ

− α − β γ

3

3 3cos cos
2 2
sin sin
1 1cos cos
2 2 .
3 3cos cos 0

2 2
sin sin sin
1 1cos cos cos
2 2

xasc

yasc

zasc

P
P

P
R

α β −

α β −

− α − β −
=

α β

α β γ

− α − β γ

 (19)
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4. Torque equilibrium condition 

The torque equilibrium condition must be satisfied to en-
sure stable equilibrium of the simulator cabin with respect 
to the upper hydraulic drive joints. An additional condition 
for the equilibrium condition of the mechanical system, 
besides the equality of the principal force vector, is the 
equality of the principal torque of the forces acting on 
the simulator cabin and the upper hinges. With this con-
dition, the tilt stability of the platform is actually guaran-
teed. It should be noted that in free flight, the fulfillment 
of these conditions is required only there is no fastening 
of the simulator cabin hinges, i.e. additional connections. 
This problem is different from the problem of stability of 
free flight from the point of view of theoretical mechan-
ics. Since the center of the associated coordinate system 
is usually chosen in the center of an equilateral triangle – 
the base of the attachment of the upper hydraulic drive 
hinges – the center of gravity of the simulator cabin is 
located in the center of this triangle. The moment relation 
in the bound coordinate system has the form:

 

1 2

1 2

1 2

3

3

3

1 2

3

(0;0;0)

0.
acs

acs

acs

v v

acs acs v acs v

v v

v x acs
acs v y acs

acsv z

x x
M R y R y

z z

x P x
R y P y

zz P

   
   

= × + × +   
   
      

          × + × =                 

∑
 



 (20)

Since the point at which gravity acts coincides with the 
origin of the associated coordinate system, the last term 
on the left-hand side of Eq. (20) is equal to the zero vector: 

0, 0, 0asc asc ascx y z= = = . Therefore, taking into account 
the relation (Eq. (8)), it is obtained:

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 0.

3 1cos sin cos
2 2

3 1cos sin cos
2 2

0 sin cos

v v v

v v v

v v v

i j k

R R R
x y z

i j k

R R R
x y z

i j k
R R

x y z

α α − α +

− β β

=

− β +

γ γ

  

  





 

 (21)

After calculating the determinants the terms for each of 
the basis , ,i j k

  

 are grouped:

 

1 1 2

2 3 3

1 1 2

2 3 1

1 2 2 3

1 1 2

2 3 3

1 1 2

2 3 1

1 2 2 3

1( sin cos sin
2

1 cos sin cos )
2

3 1 3( cos cos cos
2 2 2

1 3cos cos ) ( cos
2 2

3sin cos sin sin ) {0;0;0}.
2

v v v

v v v

v v v

v v v

v v v v

i R z R y R z

R y R z R y

j R z R x R z

R x R x k R y

R x R y R x R x

⋅ α + α + β +

β + γ − γ −

⋅ α + α − β +

β − γ + ⋅ α −

α − β − β − γ =







(22)

Each vector component on the left side of Eq. (22) 
must be equal to 0, since the right side is a zero vector. 
This results in the following system of equations:

1 1 2

2 3

1 1 2

2 3

3 3cos sin cos
2 2

sin sin 0,
v v v

v v

R y R x R y

R x R x

α − α − β −

β − γ =

1 1 2

2 3

1 1 2

2 3

3 1 3cos cos cos
2 2 2

1 cos cos 0,
2

v v v

v v

R z R x R z

R x R x

α + α − β +

β − γ =

 

1 1 2

2 3

1 1 2

2 3

3 3cos sin cos
2 2

sin sin 0.
v v v

v v

R y R x R y

R x R x

α − α − β −

β − γ =
 (23)

After substituting in (Eq. (23)) 1 2 3, ,R R R , calculated on 
the basis of the Eq. (19), this system of equations becomes 
an essentially non-linear system of transcendental equa-
tions with respect to the desired angles , ,α β γ . Such sys-
tems of equations only allow for a numerical solution. By 
numerically solving the system of Eq. (23), the limit values 
or critical values of the angles are obtained: an increase 
of at least one of the angles , ,α β γ  beyond the numeri-
cally determined limit values leads to an unstable state of 
equilibrium. The range of stable equilibrium operation of 
the Stewart platform is thus in the following range:

α < α < π π < β < β π < γ < γ/ 2; / 2 ; / 2 .kp kp kp  (24)

The conditions of fulfillment (Eq. (24)) mean the follow-
ing. The operator controlling the movement of the flight 
simulator must monitor the magnitude of the forces in 
the hydraulic actuators as they compensate for the reac-
tions in the upper hinges to maintain a stable equilibrium. 
In practice, it is necessary to create a computer program 
that contains all the analytical mathematical relationships 
described above in order to operate the Stewart platform. 
This program should calculate the maximum allowable val-
ues of the angles according to the given values of the in-
put parameters (weight, roll, yaw and pitch angles) to meet 
the conditions for stable equilibrium. If the given values of 
the input parameters of the simulator do not allow to ful-
fill the conditions for stable equilibrium, the program (the 
brain of the robot) should issue the following message 
to the operator: “The parameters you have given bring 
the dynamic system out of the state of stable equilibrium. 
Please specify a different range of control parameters”.

5. Algorithm for checking the stable 
equilibrium position of the platform 

The iterations of algorithm are:
1. Determine the operating parameters of the platform: 

weight, pitch, roll and yaw angles.
2. Determine the absolute values 1 2 3, ,R R R of the reactions 

in the upper hydraulic drive joints.
3. Using the values of the reactions 1 2 3, ,R R R , the pro-

jections , ,
acs acs acsx y zP P P of the simulator compartment 

weight on the axis of the associated coordinate system, 
determine the limit values of the angles , ,α β γ between 
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the modules of the normal reactions and the corre-
sponding heights of an equilateral triangle to which the 
hydraulic actuators are symmetrically attached.

Conclusions 

1. In this paper, a new analytical physical model for the 
stable dynamic equilibrium operation of the Stewart 
platform is proposed. This model application derived 
a closed system of equations that describe the stable 
equilibrium state of the Stewart platform, linking the 
physical and geometrical parameters of the mechanical 
system. 

2. In the context of kinetostatics, the general motion is 
divided into the uniformly accelerated motion of the 
center of inertia and the equilibrium stable motion of 
the Stewart platform. 

3. An analytical dependence of the suspension reactions of 
the upper hinges on the weight of the simulator cabin 
and on the pitch, roll and yaw angles was determined. 
For them, the limiting angles for the position of the 
base of the simulator cabin mounting are determined 
at which stable equilibrium is achieved.

4. Fulfillment of the conditions of the offered model made 
it possible to determine the values of the reactions 

1 2 3, ,R R R  in the upper hinges of the platform attach-
ment. These values correspond to the limiting angles

, ,α β γ .
5. The new physical model proposed in this work and the 

analytical relations obtained on its basis are of great 
practical importance. The operator can use a pro-
grammed automatic to control the operation of the 
flight simulator based on the Stewart platform to ensure 
that the parameters set during training do not throw the 
flight simulator out of stable equilibrium.

Contributions of the authors 

Kabanyachiy V. V. wrote an introduction and described 
the general state of the problem of motion simulation on 
dynamic stands. In particular, the problem of describing 
the stability of the operation of the Stewart platform is 
presented as unsolved so far.

Lukianov P. V. carried out an analysis of the available 
mathematical models for the operation of Stewart plat-
forms, which in fact showed the absence of conditions for 
the stable operation of the Stewart platform as a whole 
as a mechanical system. In this context, Lukianov P. V. 
proposed a new physical model for the stable equilib-
rium operation of the Stewart platform, implemented in 
the form of a closed system of equations, which makes it 
possible to determine the range of limiting parameters of 
the stable equilibrium of the Stewart platform. Based on 
this model, an algorithm for controlling a state of equilib-
rium was developed. This algorithm allows monitoring the 
choice of the range given by the operating parameters of 
the flight simulator based on the Stewart platform.
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Notations 

Symbols and abbreviations
a


 is the acceleration of the center of mass of the system;
/ 0dC dm α <  is the condition of longitudinal stability (see 

Ahmed, 2012);
 det A is the determinant of matrix A;

F  is the Coulomb force acting on the body;
Fc is the frictional force;
g  is the acceleration due to gravity;
G  is the feedback coefficient;

, ,a b ch h h  are the heights of the triangle ABC∆ ;
m  is the body weight;

https://doi.org/10.1109/TMECH.2022.3175377
https://doi.org/10.1109/41.222651
https://doi.org/10.1016/j.cnsns.2009.01.001
https://doi.org/10.1016/j.engstruct.2021.113304
https://doi.org/10.1109/ROBOT.1989.100025
https://doi.org/10.1109/SECON.1991.147884
https://doi.org/10.1007/s11071-021-06767-8
https://doi.org/10.2514/6.1992-4173
https://doi.org/10.3844/jmrsp.2018.45.59
https://doi.org/10.2514/1.G005066
https://doi.org/10.1109/ICMA.2006.257695
https://doi.org/10.3390/machines10080711
https://doi.org/10.1108/eb034141
https://doi.org/10.1177/1729881420908076
https://doi.org/10.3390/math8112051
https://doi.org/10.1108/01439910910980178
https://doi.org/10.3390/s22134829
https://doi.org/10.1016/S0925-2312(97)00048-9
https://doi.org/10.1002/(SICI)1097-4563(199807)15:7%3C395::AID-ROB2%3E3.0.CO;2-H
https://doi.org/10.1002/(SICI)1097-4563(199807)15:7%3C395::AID-ROB2%3E3.0.CO;2-H
https://doi.org/10.1109/ChiCC.2016.7554348


128 P. V. Lukianov, V. V. Kabanyachyi. Mathematical model of stable equilibrium operation of the flight simulator based on the Stewart platform

R F PM M M M+ + =  



   

 is a total moment of the forces 

, ,R F P
  

 ;
xyO is the Cartesian coordinate system;

P


 is the weight of the simulator cabin together with the 
base of its attachment;

{ }, ,
asc asc ascasc x y zP P P P=



is the weight of the simulator cabin 
together with the base of its attachment in the as-
sociated system of coordinates;

1 2 3, ,R R R
  

 are the reaction forces in each of the upper 
hinges;

1 2 3, ,acs acs acsR R R
  

 are the reaction forces in each of the up-
per hinges in the associated system of coordinates;

, ,α β γ are angles between the heights of the base of the 
triangle and the reactions;

, ,γ ψ ϑ  are the roll, pitch, yaw angles;

1 2 3F F F F= + +
   

     is the active force producing acceler-
ated motion in each of the upper hinges.


