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Introduction

The loss of control of an unmanned aerial vehicle can be 
caused by unfavorable wind shear, incorrect configura-
tion of the take-off flaps, icing on the leading edge of the 
wings, faults in the control system, or incorrect input from 
the pilot (Gill et al., 2013). Loss of control can be described 
as motion that is outside of the normal operating flight 
envelope, due to the UAV’s inability to maintain altitude 
or heading, unpredictably altered by pilot control inputs, 
likely to result in high angular rates and displacements, etc. 
(Wilborn & Foster, 2004). Fast and automatic compensation 
that can detect abnormal situations can dramatically in-
crease the safety of UAV operation (Perhinschi et al., 2010).

Flight phase classification is often associated with flight 
envelope protection and flight control systems. It is gen-
erally a problem that needs to be solved in the multidi-
mensional space of flight parameters. Ideal candidates for 
solving problems of flight phase classification and flight 
envelope setting are artificial neural networks (ANNs), 
which have been successfully used to calculate the flight 
envelope and determine whether the aircraft is within or 
outside it (Basheer & Hajmeer, 2000). This classification 
methodology can be implemented in a real-time environ-
ment, as shown in the work of Norouzi et al. (2019).

On the other hand, Tang et al. (2009) used linear 
extrapolation to update model parameters in order to 

change flight envelope parameters. The advantage of this 
system is that it allows the aircraft to fly closer to its limits 
while maintaining controllability. However, certain limita-
tions in computational power when using embedded con-
trollers do not allow such a complex system to be applied 
to small affordable UAVs. In 2016, Lombaerts et al. (2016) 
developed an adaptive algorithm to achieve flight enve-
lope protection during icing conditions (Lombaerts et al., 
2018). This system can evaluate the error state and sub-
sequently adjust the flight envelope boundaries; however, 
it relies on too many parameters and is computationally 
demanding.

To mitigate the loss of control, it is also possible to use 
nonlinear dynamics modeling, Bayesian system identifica-
tion, and known aircraft limitations to estimate the flight 
envelope, as researched by Schuet et al. (2016). However, 
these methods can be computationally demanding and 
thus not usable in small UAVs.

Therefore, many approaches to flight phase classification 
perform the classification in the offline environment and are 
designed to work only offline, such as a system of advanced 
classifiers utilizing operators’ EEG signals (Wang et al., 2019). 
Similar classification of flight phases using radar data was 
applied to solve air traffic problems, with the use classifiers 
on recorded flight data (Paglione & Oaks, 2006).

Flight phase classification can be carried out with a 
control algorithm or flight envelope protection system to 
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achieve a higher degree of safety and controllability of the 
UAV, as researched by Donato et al. (2017), who created 
an envelope-aware management system that, based on 
the flight phase, could efficiently improve the response 
to dangerous scenarios by generating recovery solutions.

As previously mentioned, solving flight phase classifi-
cation problems involves the use of algorithms with a fo-
cus on computational intelligence. For example, Shin and 
Kim created an adaptive flight envelope protection system 
that was aimed at improving the speed and accuracy of 
classifying standard and critical flight phases (Shin & Kim, 
2016). They carried out their experiments in a simulation 
environment and used a model adaptive reference-like 
control scheme focused mainly on preventing departures 
from controlled flight.

In 2019, Liu et al. (2020) studied flight phase recogni-
tion using up to nine input parameters (Chin et al., 2019) 
and a Gaussian mixture model to classify flight phases in 
the offline environment. Using this methodology, they 
achieved an average accuracy of 90%. Kovarik et al. (2020) 
also applied machine learning methodologies to perform 
flight phase identification of civil aircraft using radar track 
data and four-dimensional GPS data.

Tian et al. (2017) described flight phase classification 
with the use of a decision tree; 30 input parameters were 
used with data obtained from a simulator and accuracy of 
100% was achieved with the use of pruning.

The results of previous research show that flight phase 
classification problems are usually solved in the offline en-
vironment using rather complex algorithms and are mostly 
oriented to civil passenger aircraft and use many input pa-
rameters. There are not many papers evaluating this task 
with small unmanned aerial vehicles with very limited sets 
of parameters. The aim of the research in this paper was to 
find a computationally simple yet effective methodology 
that could identify the flight phases of a fixed-wing UAV 
with very limited computational power and a limited set of 
input parameters, in contrast to the more complex meth-
odologies using large scales of input data from ADSB and 
aimed mostly at civilian aviation that have recently been 
successfully applied for this task (Kovarik et al., 2020; Kim 
et al., 2022; Zhang et al., 2022).

Based on the state-of-the-art research and from the 
methodological point of view, fuzzy inference systems and 
artificial neural networks were identified as good candi-
dates for this task, as they are simple and have been suc-
cessfully applied. The goal of the initial design of the sys-
tem was to find the most important parameters obtained 
from the UAV sensors to reliably classify its basic flight 
phases with tests using real data, and the designed meth-
odology had to be applicable in an embedded system with 
limited computational power. This means identification of 
a set of 3–5 input parameters and design of a minimal 
neural network architecture with feed-forward structure 
and a minimal rule-base of a fuzzy inference system ap-
plicable in real-time systems. The aim of the research was 
to evaluate the feasibility of such minimalistic design, 
with further prospects of improving it for more complex 

uses and applications. The developed approach should be 
unique in this regard as development of such system for 
small UAVs has not been published so far and can serve as 
a starting point for development of more complex flight 
phase classification systems.

The paper is organized according to the performed 
workflow as follows: Section 1 describes the UAV and sen-
sors that were used to design the flight phase classification 
system perform testing flights and create a basic outline 
of the methodology. Section 2 describes the computa-
tional design of the flight phase classification algorithms 
and the experimental design for their testing using the 
Skydog UAV. Section 3 presents the testing results of the 
developed methodology using the obtained flight data, 
and the last two sections discuss and evaluate the results, 
and mention future research on simple flight phase clas-
sification algorithms and their applications.

1. Materials and methods

To design a flight phase classification system for a small 
affordable UAV, it is necessary to take into account limited 
computational resources and limited types and numbers 
of sensors with corresponding flight parameters. To resolve 
this parametric deficiency, which can result in some uncer-
tainties, methodologies from the area of computational 
intelligence can be successfully applied. In this study, to 
cope with low computational demand, the authors select-
ed two approaches, fuzzy inference systems and artificial 
neural networks, which will be explored further.

The aim was to create an initial design of a flight phase 
classifier that can be used in small, fixed-wing UAVs. The 
goal was to create a simple classifier with the use of ad-
vanced computational methods with a minimal set of in-
put data. The advantage of the designed fuzzy inference 
system (FIS) is its simplicity. The FIS works with a prede-
termined set of rules that are directly aimed at the deci-
sion-making process. The fuzzy logic provides linguistic 
expressions as the output, which can be displayed directly 
to the pilot.

Artificial neural networks allow the use of obtained 
flight data and selected parameters, which can be used to 
train the network in flight phase classification tasks. Be-
cause of the low computational demand and simplicity of 
the system, a feedforward artificial neural network with a 
relatively low number of neurons and standard training 
algorithms was used. The use of artificial neural networks 
with the selection of parameters to be used for flight 
phase classification can be a proof of concept.

To test the methodology and the selection of main 
parameters for flight phase classification, a small, fixed-
wing SkyDog UAV was used. This UAV is equipped with an 
electric engine and onboard avionics, which ensures the 
real-time collection of flight data. The aircraft has a take-
off weight of 7 kilograms and wingspan of 2 meters. The 
Pixhawk PX-4 autopilot, which has an embedded processor 
for smooth operation of control algorithms and collection 
of flight data, was selected as the control unit. The use of 



Aviation, 2023, 27(2): 75–85 77

this advanced control unit is crucial in the implementation 
of adaptive algorithms for small UAVs, as it has limited in-
put data due to a limited number of sensors (Lassak et al., 
2020; Kurdel et al., 2022; Leško et al., 2019). The workflow 
of the design of flight phase classification algorithms with 
limited input data is shown in Figure 1.

The Pixhawk PX4 control unit is the main part of the 
SkyDog avionics equipment. It enables the collection of 
flight data from individual sensors and performs and pro-
cesses calculations. One of the functions that it offers is the 
recording of flight data on an SD card. It also offers the 
ability to control the aircraft in various modes, including 
automatic mode. The connection of sensors and implemen-
tation of the Pixhawk in the SkyDog is shown in Figure 2.
The sensors listed in Table 1 were used to obtain the pa-
rameters for the flight phase classification system. The air-
speed from an MS4525DO sensor (Measurement Special-
ties, 2013), to which the pitot-static tube was connected, 
was used as an input parameter for the developed system. 

A built-in MS5611 barometric sensor was used to obtain 
the barometric altitude (Measurement Specialties, 2012), 
which was used with the altitude from the GPS module to 
more accurately determine the altitude at which the UAV 
is located. An MPU6000 3-axis accelerometer/gyroscope 
sensor (InvenSense, 2013) was used to determine angular 
velocities.

2. Design of flight phase classification 
system

In the initial flight phase classification system design, it 
was decided to test the reliability of the methodologies 
from the perspective of computational intelligence in 
classifying the current state of flight of UAV into 3 basic 
situational frames: take-off, flight, and landing. If the sys-
tem performed reliably, it could be expanded further for 
other flight situations. The design should also work with a 

Figure 1. SkyDog UAV and the workflow of the design

Figure 2. Block diagram of avionics in SkyDog aircraft (Leško et al., 2019)

Table 1. Sensors used for data collection

Parameter Sensor Error

Airspeed MS4525DO ±0,25 %

Barometric pressure MS5611 ±2.5 mbar

N/A N/A Nonlinearity

Acceleration/angular velocity MPU6000 3-axis accelerometer/gyroscope Accelerometer 0.5%
Gyroscope 0.2%



78 J. Leško et al. Flight phase classification for small unmanned aerial vehicles

minimal set of input parameters. After a careful analysis, 
3 basic parameters were selected as inputs for the fuzzy 
inference system and the artificial neural network:

 ■ Velocity: Indicated aircraft velocity (km/h) as meas-
ured by the airspeed sensor (Table 1);

 ■ Altitude: Barometric altitude (m) as measured by the 
sensor measuring barometric pressure;

 ■ Current: Actual value of current (A) supplied to the 
electric engine by the batteries.

The selection of these parameters and situational 
classes implies that both the FIS system and the ANN will 
contain 3 inputs and 3 outputs, thus meeting the goals of 
simplicity of the system and real-time operability.

2.1. Design and implementation of the system 
using fuzzy logic
The fuzzy inference system (FIS) uses non-Boolean fuzzy 
logic and IF-THEN rules defined by an expert (Kaleva, 
1987). Fuzzy inference systems were derived from expert 
systems, which make them ideal candidates for solving 
flight phase classification problems. The use of fuzzy log-
ic implies that transitions between the output states of 
the system are smooth. The diagram in Figure 3 shows a 
fuzzy inference system for flight phase classification with 
selected inputs and outputs (Klir & Yuan, 1995). The Mam-
dani type has been selected for application in flight phase 
classification, as it is desirable to have the outputs of the 
system as fuzzy membership functions. The goal of the 
design is to create an FIS with minimum rules so that it 
can be easily modified and applied in real-time control 
systems. In the design phase a heuristic expert approach 

using flight envelope setting has been used to create rules 
and membership functions of the FIS system.

The FIS classification block evaluates the combination 
of input parameters velocity, altitude, and current, repre-
sented by linguistic variables, and their corresponding val-
ues, defined by individual membership functions low, mid-
dle, and high. All combinations create a rule-based design, 
as shown in Table 2. The output of the system consists of 
linguistic variables Take-off, Flight, and Landing, with the 

Figure 3. Fuzzy inference system for flight phase 
classification

Figure 4. FIS classifier of membership functions for 3 input 
variables

Table 2. FIS classifier rules

No.

Flight phase classification conditions of fuzzy inference system

INPUTS OUTPUTS

AIRSPEED ALTITUDE CURRENT Take-off Flight Landing

1. Low Low Low No No Yes
2. Low Low High Yes No No
3. Low Medium Low No No Yes
4. Low Medium High Yes No No
5. Low High Low No Yes No
6. Low High High No Yes No
7. Medium Low Low No No Yes
8. Medium Low High Yes No No
9. Medium Medium Low No No Yes
10. Medium Medium High No Yes No
11. Medium High Low No Yes No
12. Medium High High No Yes No
13. High Low Low No Yes No
14. High Low High Yes No No
15. High Medium Low No Yes No
16. High Medium High No Yes No
17. High High Low No Yes No
18. High High High No Yes No
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corresponding values represented by membership func-
tions yes and no. Figure 4 shows the membership functions 
for the variables velocity, altitude, and current. They are 
of generalized bell-shaped membership function (gbellmf) 
type to secure smooth transitions between states.

Table 2 lists the rules used in the FIS classification 
block. Based on these rules, the system classifies flight 
phases, with the output given in the interval <0.25–0.75>.

2.2. Design and implementation of the system 
using artificial neural networks
As in the previously designed FIS, 3 input parameters were 
fed into the system: velocity, altitude, and electric current. 
This indicates that the network has 3 neurons in its in-
put and 3 neurons in its output, corresponding to 3 flight 
phases: Take-off, Flight, and Landing.

Figure 5 shows individual layers in the neural network 
used for flight phase classification. Several configurations 
of the feedforward neural network were tested in its design. 
In training experiments using flight data obtained from the 
SkyDog drone, the 3-20-10-3 architecture was found to be 
optimal when trained by the Levenberg–Marquardt back-
propagation algorithm (Kanzow et al., 2004). The training 
algorithm converged on average after 12 training itera-
tions given the training datasets from individual flights. 
Hidden layer 1 consisted of 20 neurons, hidden layer 2 
consisted of 10 neurons, and the output layer consisted 
of 3 neurons. Given the low complexity of the trained net-
work, which was its design goal the computational time 
for a single iteration was on average 0.9 seconds using the 
LM algorithm. A higher numbers of layers and neurons in 
hidden layers did not provide better classification results 
on training sets as well as training algorithms based on 

standard gradient descent methods, which needed more 
than 300 training iterations.

Figure 5. Feedforward neural network with two hidden layers

2.3. Experimental setup
The goal of the experiment was to compare two created 
classification systems that could classify flight phases with a 
minimal set of input data. Flights were performed based on 
predetermined flight plans, consisting of specific maneu-
vers to test the functionality of the designed systems. The 
flight plans are described in Table 3. The duration of each 
flight was measured from the start of the Take-off phase 
until the end of the Landing phase. Flight 1 took 142 s, 
flight 2 lasted 131 s, and flight 3 took 109 s to accomplish.

In the first flight, the flaps were set to 60%, which is 
classed as an incorrect UAV Take-off configuration. That 
was purposely set to monitor the systems’ flight phase 
recognition and ensure correct classification. During the 
Flight phase in Flight 1, the correct classification was moni-
tored while maximum flight velocity was exceeded. The 
entire flight took 142 seconds from the beginning of the 
Take-off phase until the end of the Landing phase.

Flight 2 took 131 s for total flight phase classification. 
It consisted of 2 Take-off, 2 Cruise, and 2 Landing phases, 
since it had a touch-and-go maneuver. Thus, all values 
were divided into 2 parts (duration of first part of flight + 
duration of second part of flight). The purpose of this 
flight was to create an unnatural condition for the system 
and monitor its classification.

Table 3. Flight plans for individual flights

Flight 1

Take-off phase Set flaps to 60% (incorrect take-off configuration setting) to monitor successful phase recognition using 
individual systems
Longer and steeper take-off

Flight phase Exceed maximum velocity of 105 km/h to monitor correct flight phase classification at higher velocity

Landing phase Set flaps from 0 to 60%

Flight 2

Take-off phase Set flaps to 30%

Flight phase Set flaps to 0%
Perform simple circuits with minimum tilt, reasonable flight velocity and altitude

Landing phase Set flaps to 60%
Perform touch-and-go maneuver
Perform last circuit and land, then wait until UAV completely stops

Flight 3

Take-off phase Set flaps to 30%
Perform smooth start with flaps at lateral inclination of 20–40%

Flight phase Set flaps to 0%
Perform flight at reasonable speed at different flight altitudes

Landing phase Set flaps to 60%
Perform landing at very low velocity (under 38 km/h)
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In flight No. 3, limit situations and the correct classifi-
cation of individual flight phases were tested. The plan was 
to land at a low speed (below 38 km/h), but with the given 
flap configuration it was not possible to keep the velocity 
lower than 38 km/h. This phase was therefore performed 
as a normal landing.

3. Results

The output data were compared to etalons that were cre-
ated based on the input data and predetermined flight 
plans. The etalon represents the ideal flight phase duration 
that should be reached for algorithms to correctly classify 
individual phases.

Table 4 lists the etalon values for the individual flight 
phases during the 3 flights. The duration parameter repre-
sents how long each individual flight phase lasted during 
the whole flight. The start of phase parameter represents 
the second when the flight phase started, and the end 
of phase parameter represents when the corresponding 
flight phase ended. The total column shows the duration 
of all the flight phases together and the whole duration 

of the flight from the Take-off phase until the end of the 
Landing phase.

Equations (1)–(3) were used to calculate the statistical 
parameters recall, precision, and accuracy (Olson & Delen, 
2008):
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where TP is true positives, TN is true negatives, FP is false 
positives, and FN is false negatives (Olson & Delen, 2008).
Flight 1
The graphs displayed in Figure 6 show input values of 
Flight 1, together with etalon markings. The duration of 
Flight 1 was 142 s. The whole course of the flight is given 
in Table 3.

Table 4. Etalon values of three flights

Etalon
(Flight 1) Duration (s) Start of phase (s) End of phase (s) Total (s)

Take-off 6 25 31 142
Flight 100 32 132
Landing 36 133 169
Etalon
(Flight 2)

N/A N/A N/A N/A

Take-off 3/2 6/101 9/103 N/A
Flight 88/21 10/104 98/125 93/38

Landing 2/15 99/126 101/141 N/A
Etalon
(Flight 3)

N/A N/A N/A N/A

Take-off 8 10 18 N/A
Flight 81 19 100 109
Landing 20 101 121 N/A

Figure 6. Input data for Flight 1
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Table 5 lists the flight phase classification values using 
the mentioned systems. The delay value represents the 
flight phase determination delay in seconds. For example, 
the FIS had the longest delay in the Flight phase, which 
took >7 s to classify, and it classified the end of the phase 
6 s sooner. For the feedforward neural network, the delays 
of the Flight phase were +0 s for the start of the phase and 
+1 s for the end of the phase.

The most accurate was the feedforward neural net-
work, with 97.18% accuracy. It was able to accurately clas-
sify 138 s out of a total time of 142 s. The ANN also had 
the least delays in classifying the individual flight phases. 
As can be seen from the graphs in Figure 7 and the values 
in Table 5, the feedforward neural network had the least 
delays.

Table 5. FIS classifier output values for Flight 1

Phase

Delay
Precision Recall Accuracy (%) Overall accuracy 

(%)Start of phase (s) End of phase (s)

FIS NN FIS NN FIS NN FIS NN FIS NN FIS NN

Take-off +4 +3 +1 –1 1 1 0.6 1 50 50 88.73 97.18
Flight +7 +0 –6 +1 1 1 0.94 1 87 100
Landing –6 +1 +0 +0 0.82 1 1 1 81.81 97

Table 6. FIS classifier output values for flight course 2

Phase

Delay
Precision Recall Accuracy (%) Overall accuracy (%)

Start of phase (s) End of phase (s)

FIS NN FIS NN FIS NN FIS NN FIS NN FIS NN

Take-off +2/Not 
identified

+1/+3 +1/Not 
identified

+0/+1 1 0.75 0.5 0.6 20 60 74.05 92.37

Flight +4/Not 
identified

+2/+2 –5/Not 
identified

+1/+2 1 0.98 0.76 0.99 72.47 97.25

Landing –5/Not 
identified

+1/+3 Not 
identified

+2/+0 0.38 0.86 1 0.86 100 70,59

Figure 7 shows that both systems classified the Take-
off phase correctly. The most accurate system can be 
considered the ANN, which deviated minimally from the 
etalon. The Flight phase was classified correctly by both 
methods, but the difference was in the classification delay.

Flight 2
Input values from Flight 2 are displayed in Figure 8, 

and the whole course of the flight is given in Table 3. It 
took 131 s from the start of the Take-off phase until the 
end of the Landing phase. The main goal of flight 2 was 
to monitor the classifier’s output during the touch-and-go 
maneuver.

As can be seen in Table 6, the most accurate classifier 
was the ANN. It was able to accurately classify not only the 
individual phases but also the phase of secondary Flight 

Figure 7. Comparison of NN output with etalon values from flight course 1
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and Take-off after the touch-and-go maneuver. The only 
drawback was the delayed determination of the Landing 
phase when approaching the runway during the touch-
and-go maneuver.

As shown in Table 6 and Figure 9, the FIS was unable 
to classify the correct transition from the Landing phase 
to the secondary Take-off phase. As these had lower ve-
locities and lower altitudes during the flight circuit, the FIS 

Figure 8. Input data for Flight 2

Figure 9. Comparison of NN output with etalon values from flight course 2

Figure 10. Input data for Flight 3

evaluated this part as Landing. The most accurate was the 
ANN, which classified flight phases with more than 92% 
overall accuracy.
Flight 3
Flight 3 took 109 s from the beginning of the Take-off 
phase until the end of the Landing phase. The whole flight 
plan for Flight 3 is given in Table 3. The graphs in Figure 10 
display input data used for flight phase classification.
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As can be seen from Table 7, the NN represents a very 
accurate system for determining individual flight phases, 
with accuracy of 92.66%.

The detailed performance of both classifiers can be 
seen in Figure 11 presenting the third flight as a time plot. 
As in previous flights, the FIS was the slowest and least 
accurate. The accuracy of flight phase identification was 
78.84%. In addition, the delays that occurred in the flight-
phase classification were up to 11 s, which is a consider-
able amount of time. The most accurate in flight 3 was 
the neural network, which again confirmed its superiority 
over the FIS.

4. Discussion

The data from three flights with special maneuvers, as de-
scribed in Section 3.3, were used as inputs for the flight 
phase classification system, which used two systems for 
classification, fuzzy inference and artificial neural network. 
After being tested in an offline environment, it can be said 
that the system worked properly and could correctly iden-
tify each flight phase. With the proposed methodology, 
it was also possible to choose the three optimal param-
eters for reliable flight phase classification and create a 
lean classifier, which can be implemented in embedded 
controllers with limited computational power. The trained 
neural networks and fuzzy inference system are suitable 
for use on other available autopilots like ardu-pilot or oth-

er embedded platforms, which are able to measure the 
selected input parameters.

As the research in this paper shows, each system 
has advantages and disadvantages. Fuzzy logic brings a 
smooth transition between each phase. Thus, with further 
improvement, it could be used to predict upcoming situ-
ations. A big disadvantage of the FIS is that the algorithm 
must be programmed and it consists of a strict set of rules 
to correctly classify the flight phase. This means that the 
user of the algorithm must manually set boundaries, which, 
if met, will signify specific flight phases. Its overall average 
accuracy was calculated as 81.48% for three chosen flights. 
Table 8 shows a deficiency of correct take-off classification, 
with only 27.5% accuracy. It can be improved by including 
more input parameters and programming them together 
with existing rules. The FIS was also unable to correctly 
identify the touch-and-go maneuver. It would probably 
be more successful with added input parameters and an 
expanded rule base.

The feedforward neural network is one of the best op-
tions for performing the task of classifying flight phases 
with minimal input parameters. If there existed flight data 
with all possible situations, it could serve the neural net-
work in terms of further improving the already high suc-
cess rate. The overall average accuracy of even a simple 
feedforward ANN was 94.07%. The neural network was 
able to correctly classify 98.26% of the Flight phase, which 
can be considered as reasonable accuracy.

Table 7. FIS classifier output values for flight course 3

Phase

Delay
Precision Recall Accuracy (%) Overall accuracy 

(%)Start of phase (s) End of phase (s)

FIS NN FIS NN FIS NN FIS NN FIS NN FIS NN

Take-off +6 +4 –2 +1 1 0.8 0.25 0.57 12.5 50.00 81.65 92.66
Flight +11 +3 –1 +1 1 0.99 0.93 0.99 85.19 97.53
Landing +2 s +1 +0 +0 0.70 0.86 1 0.95 95.00 90.00

Figure 11. Comparison of NN output with etalon values from flight course 3
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In Table 8, the average accuracy of the classification of 
individual phases by the FIS and ANN is calculated. The 
ANN had the highest average accuracy, reaching 94.07%. 
This system managed to recognize all flight phases correct-
ly. It was also able to recognize a touch-and-go maneuver, 
which FIS was unable to do. A big advantage of the ANN is 
the possibility of training it further with expanded training 
datasets. By training the network, it should be possible to 
improve the accuracy of flight phase evaluation, even with 
the limited architecture of the network.

Conclusions

Both the fuzzy inference system and the artificial neural 
network were subjected to several tests and, under normal 
conditions, performed adequately, as shown in the results. 
However, when tested against special flight conditions with 
the SkyDog UAV, only the neural network performed ad-
equately; it can be concluded that this approach met the 
design goal of working with a only three input parameters, 
which were identified and a lean network architecture, 
which are the main contributions of the study. Contrary to 
most papers, which base their results on simulations the 
performance of the designed classifiers has been evalu-
ated using real-world data and were implemented in the 
Pixhawk PX-4 autopilot. Performance could be improved 
by further training on an even larger dataset with more 
training flights with different conditions. The fuzzy infer-
ence system in the role of flight phase classifier would need 
more input parameters and a larger rule base to be equally 
successful, but it can serve in a support role to improve 
switching between the individual situational frames.

In conclusion, it can be stated that selecting three input 
parameters is sufficient for reliable flight phase classifica-
tion when using even a small feedforward neural network. 
The research can be expanded by creating sub-classifiers 
in the form of other small artificial neural networks, in 
order to further decompose the three basic flight situa-
tions into micro situations, such as climb/descent, loiter, 
or abnormal flight situations, such as an aerodynamic stall. 
Fusion of the FIS and neural network classifiers could be 
another path of follow-up research. The resulting classifier 
can be connected to a diagnostic system or be used in ad-
vanced drone situational control systems. The developed 
classification system can be taken as proof of concept for 
implementation in embedded real-time control systems 
with limited computational power and resources, and it 

Table 8. Overall average accuracy of FIS and NN

FIS
Average accuracy  

(per phase)
Overall average

accuracy

FIS NN FIS NN

Take-off 27.50% 53.33% 81.48% 94.07%
Flight 81.55% 98.26%
Landing 92.27% 85.94%

shows that even a simple neural network can produce ad-
equate results in such an application with correctly identi-
fied inputs and architecture.
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