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Abstract. Studies on safety in aviation are necessary for the development of new technologies to forecast and prevent 
aeronautical accidents and incidents. When predicting these occurrences, the literature frequently considers the internal 
characteristics of aeronautical operations, such as aircraft telemetry and flight procedures, or external characteristics, such 
as meteorological conditions, with only few relationships being identified between the two. In this study, data from 6,188 
aeronautical occurrences involving accidents, incidents, and serious incidents, in Brazil between January 2010 and Octo-
ber 2021, as well as meteorological data from two automatic weather stations, totaling more than 2.8 million observations, 
were investigated using machine learning tools. For data analysis, decision tree, extra trees, Gaussian naive Bayes, gradient 
boosting, and k-nearest neighbor classifiers with a high identification accuracy of 96.20% were used. Consequently, the 
developed algorithm can predict occurrences as functions of operational and meteorological patterns. Variables such as 
maximum take-off weight, aircraft registration and model, and wind direction are among the main forecasters of aeronau-
tical accidents or incidents. This study provides insight into the development of new technologies and measures to prevent 
such occurrences.

Keywords: air transport, artificial intelligence, aviation accident, aviation incident, innovation, machine learning, safety.

Introduction

The use of computational tools in the analyses of large 
volumes of data, particularly those incorporating the prin-
ciples of artificial intelligence (AI), can be considered a 
powerful instrument for forecasting and preventing aero-
nautical accidents. Since the first studies on AI were con-
ducted by John McCarthy in the 1950s, the technology 
has been applied in many areas for different purposes. 
Its main applications in aviation can be identified from 
the studies conducted by Gosling (1987) and include the 
strategic management and tactical control of air traffic 
flow, improved simulation techniques, aircraft on-board 
equipment development, and the development of Next-
Generation Air Transportation System (NextGen) (Post, 
2021), among others involving high levels of complexity in 
decision-making. Such decision-making can be supported 
by identifying patterns in the behavior of input data and 
their effects on output data.

Several examples of AI applications in aviation can be 
identified from recent literature in which machine learn-
ing techniques have been used to develop algorithms for 

forecasting and preventing aeronautical accidents (Pa-
triarca et  al., 2022); detecting normality or anomalies 
in operations from flight data (Puranik & Mavris, 2020; 
Stogsdill et al., 2021; Xu et al., 2020); providing support 
for airport pavement maintenance (Barua & Zou, 2021); 
forecasting take-off times (Dalmau et al., 2021); predict-
ing the true air and ground speeds during aircraft touch-
down (Puranik et al., 2020); and defining airport capac-
ity (Choi & Kim, 2021), airport congestion, and arrival 
delays (Rodríguez-Sanz et al., 2019). However, it is noted 
that such studies predict occurrences based on target vari-
ables that may influence operational flight safety and do 
not consider real data from accidents or incidents, such as 
meteorological conditions that can affect such accidents 
or incidents.

To fill this theoretical gap, this paper proposes forecast 
procedures for aeronautical occurrences, which are a func-
tion of parameters considered in the investigation of ac-
cidents and meteorological conditions. Machine learning 
techniques are used to support the collection, processing, 
and treatment of data using Brazilian cases as a reference.
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1. Artificial intelligence and aviation safety

Three different machine learning paradigms in AI have 
been proposed by Sutton and Barto (2018): (a) supervised 
learning, i.e., the processing of data from datasets and ex-
ternal supervisor knowledge; (b) unsupervised learning, 
i.e., the identification of mathematical structures in an 
unlabeled dataset; and (c) reinforcement learning, i.e., the 
constant interaction in the analysis of a given problem, 
without prior definition of the actions to be taken, dem-
onstrating the consequences of certain actions over time. 
In these paradigms, different techniques and algorithms, 
such as the Bayesian network, decision tree, gradient 
boosting, neural network, and random forest, which have 
different advantages according to the type and amount of 
data analyzed (Truong & Choi, 2020), can be used to de-
sign predictive models in relation to a given object.

For operational safety in aviation, considering the ap-
proach and landing phases of general aviation, Puranik 
and Mavris (2018) identified flight-level anomalies from 
procedures such as one-class support vector machine 
(SVM) and density-based clustering algorithm (DBSCAN) 
in the grouping of the analyzed data in clusters in such 
a way that the outliers were highlighted, thus indicating 
possible anomalies associated with the considered param-
eter. The relevance of the computational tool used in data 
analysis is not only in the identification of patterns, but 
also in the identification of outliers that may influence the 
safety of operations.

Meanwhile, Xu et al. (2020) used a deep neural net-
work, among other different classifiers (k-nearest-neigh-
bor, decision tree, adaboosted decision tree, random for-
est, naive Bayes), to analyze 1,572 accident data from Jan-
uary 2005 to December 2015. The study considered this 
method to be the best for accident prediction. Based on 
this, the authors used data from 825 accidents involving 
only helicopters.

A review of the literature indicates that a significant 
volume of historical data is commonly used to predict 
future recurrences. However, in the case presented by Pa-
triarca et al. (2022), the authors recommend the internal 
adoption of business intelligence and machine learning 
solutions by air navigation service providers (ANSPs), 
and using available data in a self-service safety intelligence 
approach, which the authors consider as democratizing 
safety intelligence in aviation. According to the authors, 
ANSPs must continually develop business intelligence and 
machine learning applications from traditional databases, 
which can be improved from the identified solutions. The 
four different phases proposed by the authors refer to the 
analysis and collection of information needs, planning of 
the architecture, development and practical application of 
the solution. Table 1 presents some of the main studies on 
the use of AI in aviation safety.

As shown in Table 1, studies commonly use data from 
aeronautical operations, such as vertical speed, angle of 
attack, altitude, flight duration, and number of seats (Dal-
mau et al., 2021; Puranik & Mavris, 2018; Rodríguez-Sanz 

et al., 2021), or meteorological conditions, such as wind 
direction, wind speed, visibility, and temperature (Choi 
& Kim, 2021; Schultz et al., 2021), and airport operating 
conditions, such as capacity and infrastructure manage-
ment (Barua & Zou, 2021; Rodríguez-Sanz et al., 2019). 
A significant gap can be identified in the literature when 
considering the actual data on aeronautical accidents and 
incidents and their correlation with climatic variables, 
which is the main contribution of this study to the state 
of the art.

2. Methodology

This study used a process of three steps to forecast certain 
phenomena from a set of operational and meteorologi-
cal data, starting with the identification, collection, and 
selection of data, identified here as feature engineering, 
followed by the identification and application of possible 
machine learning classifiers, and finally, ending with the 
development of the forecasting algorithm based on feature 
importance.

Data from 6,188 aeronautical accidents, incidents, and 
serious incidents that occurred in Brazil between January 
03, 2010, and August 08, 2021, investigated by the Center 
for Investigation and Prevention of Aeronautical Acci-
dents (CENIPA), as well as meteorological data from ap-
proximately 2.6 million measurements collected during 
the same time period in two different automatic weather 
stations, were analyzed. Based on the analysis, machine 
learning and data analytics were used to identify patterns 
in occurrences and their relationship with meteorological 
conditions. An algorithm capable of predicting certain oc-
currences as a function of operational and meteorological 
conditions was proposed.

Different classifiers, such as decision trees, extra trees, 
Gaussian naive Bayes, gradient boosting, and k-nearest 
neighbor have been used. However, the random forest 
classifier was mainly adopted for prediction as it presented 
the best accuracy in the prediction model, as discussed in 
the results and was also adopted by Puranik et al. (2020), 
Rodríguez-Sanz et al. (2021), and Xu et al. (2020). Given 
that the random forest classifier presented the best accu-
racy in relation to the other classifiers adopted in various 
analyses, it was chosen for the development of the fore-
casting algorithm.

For different classes of aeronautical occurrences (Y), 
with y labeled between accident, incident, and serious in-
cident, and X is a set of predictive data, such as the type of 
aircraft and maximum take-off weight (MTOW) from the 
occurrence dataset, and the wind speed and temperature 
from the meteorological dataset, different probabilities (P) 
can be identified for y as a function of the behavior of (x), 
such that {p(j, m)} is given by j varying between 1 and 3, 
and m between 1 and 22, which refers to the number of 
inputs adopted for the classification of y.

From the set of classifiers h1(x), h2(x), ..., hk(x), con-
sidered in the implication of x in y, several combinations 
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are identifi ed in the construction of cause-eff ect trees, 
such that the random vector Θ is generated for the kth
tree. Th us, classifi er h(X, Θk) is identifi ed from input vec-
tor x. As several trees are built, the most common class (j)
is presented with a certain probability of success, identi-
fi ed as accuracy, thus defi ning a random forest (Breiman, 
2001). Using random forest, the random distribution of 
the vector Y, X is defi ned by the generalization of the er-
ror PE, presented in Equation (1), based on the margin 
function mg(X, Y), presented in Equation (2).

( )( ),  ,  0X YPE P mg X Y= < ;  (1)

( ) ( )( ) ( )( ),   k k j Y k kmg X Y av I h X Y max av I h X j≠= = − = . 
(2)

Because I is an indicator function, as the number of 
test trees increases, considering hk(X)=h(X,Θk), the prob-
ability of X in Y, P(X,Y) is expressed by Equation (3).

( )( ) ( )( ),  ( ,  max , 0X Y j YP P h X Y P h X jΘ ≠ ΘΘ = − Θ = < . (3)

Finally, the result of applying the random forest con-
sists of the presentation of the most common class identi-
fi ed in the classifi ers, as shown in Figure 1.

Th e diff erent classes obtained from Figure 1 follow the 
taxonomy proposed by the International Civil Aviation 
Organization (International Civil Aviation Organization 
[ICAO], 2020), which presents three classes of occurrence: 
incident, serious incident, and accident, named accord-
ing to their degrees of severity. An incident is associated 
with the operation of an aircraft , in which a certain ac-
tion may compromise the safety of people or the aircraft  
itself. A serious incident, on the other hand, is related to a 
critical situation in which a certain incident can lead to an 
accident. Th e accident, in turn, is associated with the op-
eration of an aircraft  in which there is signifi cant damage 
to the aircraft  or a certain person, on board or outside the 
aircraft , suff ers serious injury or death. To illustrate this 
taxonomy, Figures 2, 3, and 4 show examples of incidents, 
serious incidents, and accidents, respectively.

Figure 2 shows an incident, where a B777 aircraft  taxi-
ing at the Antonio Carlos Jobim Airport (GIG) collided its 
wingtip with the vertical stabilizer of a parked B737 air-
craft . Only these aircraft  components showed signifi cant 
damage, and none of these aircraft  were injured. Figure 3 
shows a serious incident, where the aircraft , a helicopter, 
lost the tip of one of the tail rotor blades (tipcap) and had 

Occurrences 
dataset

Weather 
dataset

Features

Kth treeTree 1

Class 1

… …… … …… ……

Features

Tree 2

Class 2

… …… … …… ……

Features

Class j

… …… … …… ……

Classifiers

Most common class 

Classifiers

Figure 1. Random forest built from diff erent datasets

Figure 2. Incident (wingtip ground collision of the B777 with the 
vertical stabilizer of the B737) (source: Aeronautical Accidents 

Investigation and Prevention Center [CENIPA], 2019)

Figure 3. Serious incident (component loss in fl ight) 
(source: CENIPA, 2015)
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to perform an emergency landing. Th e two crew members 
on board were unharmed, and the aircraft  sustained mi-
nor damage. Finally, in Figure 4, during the landing proce-
dure of an A320 aircraft  at Antonio Carlos Jobim Airport 
(GIG), the aircraft  touched down outside the limits of the 
runway, which caused serious damage to the landing gear 
with no injuries sustained by the crew or passengers.

Th en, data from 6,188 occurrences of aeronautical ac-
cidents, incidents, and serious incidents that occurred in 
Brazil between January 3, 2010, and August 8, 2021, re-
corded by the Center for Investigation and Prevention of 
Aeronautical Accidents (CENIPA, 2021), and available as 
open public data were considered. It is necessary to clarify 
that, although this value of 6,188 occurrences is a high val-
ue for the approximately 12 years considered, it represents 
only about 0.03% of all 18,206,015 aircraft  movements over 
this period (CGNA, 2022). Th e combination of data re-

ferring to the aircraft  involved in these occurrences and 
the type of occurrence, such as occurrence code, aircraft  
registration number, aircraft  model, and seats, totaled 31 
variables, corresponding to 191,828 observations. Th e data 
frame contained common variables such as the country of 
occurrence, all of them in Brazil, aircraft  model, already 
represented by the ICAO model, as well as seats in the air-
craft  involved in the occurrences, aircraft  year of manufac-
ture, and status of investigation. Other non-representative 
variables in the model were removed from the analysis as 
they presented many empty lines. In addition, variables 
such as damage level and number of fatalities were re-
moved from the mathematical analysis because such vari-
ables are presented as consequences of occurrences, and 
not necessarily conditioning factors. In addition to the oc-
currence class variable, 14 more relevant variables referring 
to aeronautical occurrences are listed in Table 2.

Figure 4. Accident (point of fi rst contact of the right main landing gear – left , and the aircraft ’s ground 
trajectory – right) (source: CENIPA, 2013)

Table 2. Characterization of variables related to aeronautical occurrences

Variable Description Measure Coding format

Aerodrome Aerodrome of occurrence Nominal 1 = Out of aerodrome, 2 = SIBH, ..., 19 = SDPG
Class Classifi cation of the type of occurrence Nominal 1 = accident, 2 = incident, 3 = serious incident
City City where the occurrence was 

registered
Nominal 1 = Guarulhos/SP, 2 = Rio de Janeiro/RJ, 3 = São Paulo/SP

Day Day of occurrence Nominal 1 = Jan/03/2010, 2 = Jan/10/2010, ..., 696 = July/27/2021
Hour Hour of occurrence Nominal 1 = 0:00:00, 2 = 1:00:00, ..., 24 = 23:00:00
Destination Flight destination Nominal 1 = not defi ned, 2 = Adalberto Mendes da Silva, ..., 75 = 

Zumbi dos Palmares
EngineType Aircraft  engine type Nominal 1 = jet, 2 = piston, 3 = turboshaft , 4 = turboprop
EngineNumber Number of aircraft  engines Nominal 1 = not defi ned, 2 = twin engine, 3 = single engine, 4 = no 

traction, 5 = tri engine
ICAOModel ICAO model of the main aircraft  

involved in the occurrence
Nominal 1 = A109, 2 = A119, ..., 112 = not defi ned

MTOW Maximum Takeoff  Weight Continuous Weight in tonne
OperPhase Operation phase Nominal 1 = not defi ned, 2 = fi nal approach, ..., 31 = low fl ight
Origin Origin of the fl ight Nominal 1 = not defi ned, 2 = Campinas – Amarais State Aerodrome, 

..., 82 = Campinas – Viracopos Internacional Airport
Registry Aircraft  registry Nominal 1 = 9VSWS, 2 = AF443, ..., 569 = PUVSM
Segment Purpose of the fl ight Nominal 1 = not defi ned, 2 = direct administration, … 11 = air taxi
Type Type of aircraft Nominal 1 = airplane, 2 = helicopter, 3 = ultralight
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Approximately 40% of the occurrences occurred out-
side the limits of the aerodromes. Once the main charac-
teristics of the occurrences were identified, the cities with 
the highest rates of occurrence were defined for the analy-
sis of meteorological data, such that three of the cities with 
the highest number of occurrences (Rio de Janeiro/RJ, São 
Paulo/SP, and Guarulhos/SP), corresponding to 13% of 
the total, were used as a reference in relation to the other 
1,130 cities in the occurrence data frame.

Regarding the meteorological data of these cities, open 
access data, available from the National Institute of Me-
teorology (Instituto Nacional de Meteorologia [INMET], 
2021), was used, and measurements were carried out at 
588 automatic weather stations active in 2021, distributed 
throughout the national territory and the Atlantic Ocean. 
Hourly measurements between January 01, 2010, and 
August 08, 2021, were considered, accounting for 8,760 
annual measurements at each automatic meteorological 

station. Thus, for the two automatic stations considered 
in the study period, 201,096 measurements were identified 
for 13 meteorological measurement parameters, totaling 
2,614,248 observations.

As two of these cities are neighbors, Guarulhos/SP 
and São Paulo/SP, data from a single weather station, the 
São Paulo – Mirante Santana (SPMS) Automatic Station 
(Lat: –23.495589696406164, Long: –46.61985646210017, 
Alt: 785.16 m) was adopted. For Rio de Janeiro, data 
from the Rio de Janeiro – Forte de Copacabana (RJCP) 
Automatic Station (Lat: –22.98807188482133, Long: 
–43.19044887942751, Alt: 25.59 m) was used. The two 
weather stations had the same measurement variables.

Variables that presented inconsistent data or a lack of 
data were removed to adopt the most representative vari-
ables in the forecast model. As a result, eight meteorologi-
cal variables were used, as listed in Table 3. Some variables 
such as global radiation, maximum dew temperature in 

Table 3. Characterization of meteorological variables

Variable Description Measure

AtmPres Atmospheric pressure hourly at station level mb
AtmPresMax Maximum atmospheric pressure in old hour mb
AtmPresMin Minimum atmospheric pressure at the previous hour mb
Precipitation Total precipitation hourly mm
Temperature Air temperature hourly (dry bulb) °C
WindDirection Wind direction hourly °gr
WindBlast Maximum wind blast hourly m/s
WindSpeed Wind speed hourly m/s

Table 4. Examples of adopted codes

Input: city, aerodrome, day, hour, matr, type, ICAOModel, eng, QEng, MTOW, segm, origin, destin, operphase, precipitation, atmpres, 
atmpresmax, atmpresmin, temperature, winddirection, and windblast.
Classifier: random forest.
Output: y_pred.

1: import[‘all necessary libraries’]
2: while True:
3: print(“y_pred”, result)
4: df = pd.read_csv(“http://landpage-h.cgu.gov.br/dadosabertos/index.php?url=http://sistema.cenipa.aer.mil.br/cenipa/media/

opendata/ocorrencia.csv”)
…
22: y = df[‘Class’]
23: x = df.drop(‘Class’, axis = 1)
24: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
25: model = RandomForestClassifier(n_estimators=100)
26: model.fit(x_train, y_train)
27: importances = model.feature_importances_
28: indices = np.argsort(importances)
29: result = model.score(x_test, y_test)
30: preview = model.predict(x_test)
31: y_pred = model.predict(x)
32: time.sleep(5)



Aviation, 2023, 27(1): 47–56 53

the previous hour, and hourly air humidity were identi-
fied, but not considered for analysis as there were many 
empty observations in the database.

In the development of the model, after choosing the 
classifier with the best accuracy, reprocessing at 5-second 
intervals was obtained from the commands while true and 
sleep time, using 80% of the data for training and 20% for 
testing. Some of the primary codes are listed in Table 4.

Despite the codes being presented in a simple form 
with only 32 lines of codes in Table 4, significant efforts 
were required in the standardization of variables, elimina-
tion of redundancies, and removal of inconsistent data, 
amongst others. Figure 5 shows the main research proce-
dure adopted in this study.

According to Figure 5, the data collection and pro-
cessing involved machine learning tools, such as the as-
signment of automatic procedures for reading data in the 
CENIPA databases and meteorological stations, identified 
as robots for locating and downloading data (code from 
line 4 of Table 4, for example), and analyses in small time 
intervals, in this case, five seconds, to improve machine 
learning in the demonstration of results.

3. Results

In the analysis of the results, descriptive statistics were 
initially presented with some of the main characteristics 
of the data for all identified aeronautical occurrences. In 
the data analysis, only the occurrences and meteorologi-
cal issues related to the reference cities of the study were 
considered.

Of the 6,188 aeronautical occurrences registered be-
tween January 2010 and August 2021, incidents, accidents, 
and serious incidents accounted for 56%, 31%, and 13 % 
of the occurrences, respectively (Figure 6). Among the 

accidents, 93% had no fatalities, however, 3.8% had one 
fatality, and 2% had two fatalities. The vast majority of 
occurrences (80%) refer to occurrences where the main 
aircraft is an airplane, followed by helicopter (11%), ul-
tralight (6%), and others (3%), as shown in Figure 7. The 
cities of Rio de Janeiro/RJ, São Paulo/SP and Guarulhos/
SP, analyzed in this study, together account for 12.86% of 
the total occurrences.

The aircraft registry includes aircraft without registra-
tions, with 14 repetitions, and registrations repeated up to 
10 times, as is the case with registrations PRTTK (ATR-42-
500), PRTTP (B727-2M7), and PPGMA (AB-115). From 
the data, the models that appear the most among the oc-
currences are aircraft ATR-72-212A (3.31%), ERJ 190-200 
IGW (2.95%), and AB-115 (2.94%). Approximately 60% 
of the aircraft involved in the incidents contained up to 7 
seats, with the majority (17%) having 6 seats. There was 
no common hour for the occurrence, however, the high-
est frequencies, in percentage, were at 20:00:00 (2.16%), 
13:00:00 (1.64%), 19:00:00 (1.63%), 13:30:00 (1.58%), and 
20:30:00 (1.48%). Note that the end of the day, when the 
crew is most possibly fatigued, and close to midday, where 
there are intense thermal activities, are among the main 
times of occurrence.

To develop the forecast model based on occurrences 
and weather data, only the data referring to 796 occur-
rences registered in the cities of Rio de Janeiro/RJ, São 
Paulo/SP, and Guarulhos/SP were analyzed in the next 
stage of the study, which represents a combined total of 
12.86%. In the analysis of data referring to the occurrences 
registered in these cities, the vast majority (83.44%) refers 
to incidents, followed by accidents (9.46%), and serious 
incidents (7.10%). Excluding the lines with empty fields, 
786 occurrences in 22 variables were considered, total-
ing 17,292 observations. In the definition of the occur-
rence class, the forecasting was made from six different 
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classifiers, for which the accuracies, in percentage, were 
obtained for DT (85.21%), ET (90.14%), GNB (70.25%), 
GB (85.91%), KN (86.07%), and RF (96.20%) classifiers.

These results, particularly the RF, are satisfactory both 
in relation to the problem studied, and superior compared 
to other studies that use similar techniques, as in Her-
rema et al. (2019), with an accuracy of 79%, or Rodríguez-
Sanz et al. (2021), with accuracies ranging between 66 and 
72% for the analysis of check-in units, and between 69 
and 74% for security control units at airports. The results 
are also superior to the analysis of the impact of meteoro-
logical conditions on airport performance by Schultz et al. 
(2021), which generated an accuracy of 95.3%. The feature 
importance identified in this study is shown in Figure 8, in 
which the features considered are presented on the y-axis 
and the percentage of relative importance of each feature 
in the model composition on the x-axis.

From the analysis of the features presented in Figure 
8, it is noted that the MTOW presents the highest level of 
importance among the features considered. In this case, 
the highest percentage of aircraft (approximately 10%) in-
volved in the occurrences have MTOW above 70 tons with 
the ICAO models A320 and B738 being the main aircraft. 
This demonstrates that the highest number of occurrences 
is among commercial aviation aircraft, even though such 
aircraft represent less than 5% of all aircraft registered in 
Brazil – 640 of 16,213 aircraft (Caetano et al., 2022).

From the analyzed data, it is noted that even if the 
main segment identified among the occurrences was 
regular aviation, the same aircraft, registered PRSAU, or 
PRSAO, used for flight instructions, was identified in 
seven different occurrences, classified as incidents. This 
demonstrates the need for an intense and exhaustive se-
ries of pilot training on the ground using simulators that 
consider meteorological conditions (Ahmadi et al., 2022), 
before entering the command of the aircraft itself in a 
real operation. Additionally, the feature importance if the 

classes are analyzed separately as a function of variables 
related to occurrences and meteorological conditions is 
presented in Figures 9 and 10, respectively.

According to Figures 9 and 10, only for the case of 
occurrence characteristics are there small changes in the 
ordering of features, especially among the first three, reaf-
firming the greater relative importance of these features 
in relation to the others. Note that Figure 10 shows that 
precipitation has the lowest percentage of importance in 
the classification of the occurrence, which contradicts the 
results of many studies conducted on the subject, such 
as those by Bandeira et  al. (2018) and Pacheco Jr. et  al. 
(2020). This makes it clear that when considering that the 
type of aircraft involved in the occurrence, in this case, 
identified mainly as high MTOW, as well as the type of 
operation, such as pilot training, should receive relevant 
attention regarding meteorological issues in the manage-
ment and prevention of aeronautical occurrences. Among 
the variables considered, there are some that can be man-
aged, such as profiles of aircraft operating under certain 
meteorological conditions and definition of an airport 
site in locations with less susceptibility to meteorological 
variables (Alves et al., 2020), such as regular relief, which 
can interfere with the safety of the operation due to the 
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movement of air masses and aircraft instability in the final 
approach. In addition, other theoretical contributions can 
be identified in collaboration with the findings of Schultz 
et al. (2021) by adding variables on accidents and aero-
nautical incidents to some of the meteorological variables 
analyzed by the authors. The results presented here also 
complement the proposal presented by Patriarca et al. 
(2022) for the development of solutions based on business 
intelligence and machine learning from real data. As there 
is a continuous update of data, it is possible to provide 
continuous and readjusted forecasts, complementing the 
studies by Sineglazov et al. (2013) and Stogsdill (2022), for 
different new circumstances involving both the character-
istics of the occurrences and meteorological conditions.

Although not considered in this study, different factors 
may also have caused such occurrences, such as cogni-
tive factors of the crew-stress level, situational awareness, 
dependencies on automated systems (Martins, 2016), op-
erational failures or violation of procedures (Medvedev, 
2013), and even other human factors related to aviation 
operations (Wan et al., 2021).

Conclusions

Through the use of machine learning techniques, the study 
demonstrated that different variables can be used in the 
forecasting of occurrences of accidents, incidents, or seri-
ous aeronautical incidents, with more than 96% accuracy. 
The main theoretical contribution of this study lies in the 
combination of the factors associated with the occurrenc-
es, recorded by an accident investigation agency, with the 
meteorological conditions identified moments before the 
occurrences so that, from the identified patterns, predic-
tions from machine learning tools can be made to avoid 
such future occurrences. 

Although meteorological-related variables are not man-
ageable, the results of this study can be used by airport man-
agers, airlines, and pilots, combined with meteorological 
forecast data, such as those made available by the European 
Center for Medium-Range Weather Forecasts (ECMWF), 
with a range of 9 km, Icosahedral Nonhydrostatic Model 
(ICON)/Deutscher Wetterdienst (DWD), with a range of 
13 km; and Global Forecast System (GFS)/National Cent-
ers for Environmental Prediction (NCEP), with a range of 
22 km, among others, in order to identify probabilities of 
occurrence of a certain accident or incident and, with that, 
take the necessary measures in advance.  In addition, new 
technologies can be developed and incorporated into avion-
ics to alert crew members about the possible risks associ-
ated with the safety of the operation.

Thus, this study can be used as a reference in the iden-
tification of target factors, such as aircraft models and 
wind direction/intensity in relation to the central axis of 
the runway in operation, among others, to carry out ap-
plied studies, which are also possible practical implications 
of the study. In addition, statistical inferences can be made 
with the number of flights performed involving occurrences 
of accidents and incidents, and flights performed safely, in 

such a way that new classes can be incorporated into the 
model, such as flights performed safely on time, out of time, 
more efficient routes, among other complementary studies. 
The results of this study provide significant guidance for the 
prevention and even avoidance of such occurrences.

As future research challenges, the greater agility in the 
operationalization of this type of data analysis demands a 
better standardization of the presented data from official 
agents, thus minimizing possible errors of tokenizing data 
via the automatic analysis of both occurrence and mete-
orological data.
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