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Abstract. In recent years, exploration operations by autonomous robots are expanding into unknown environments on 
Earth, under the sea, or even on other planets. This paper proposes the idea of Concurrent Path Planning and Position-
ing (CPPAP) using artificially distributed landmarks, while no GNSS signal is available. The method encompasses an 
observability-based direction search algorithm for path planning in parallel with Simultaneous Localization and Mapping 
(SLAM) for localization. Most of the path planning methods utilize offline algorithms; however, the proposed method de-
termines the robot’s direction of motion in real-time, concurrently with the positioning tasks by the inclusion of the system 
observability, related to the features’ distribution. Same as in all feature-based SLAMs, features play an important role in 
determination of the most observable direction, and hence the direction of the robot’s motion. Moreover, the effectiveness 
of the distribution of the features and their pattern in the proposed method is investigated. To evaluate the efficiency and 
accuracy of the CPPAP, outcomes are compared with an existing random SLAM.

Keywords: concurrent path planning and positioning (CPPAP), simultaneous localization and mapping (SLAM), Eigen-
value observability analysis, artificial landmarks, GNSS denied environments.

Introduction

The necessity of operations in unknown environments or 
conditions where no signals of GNSS/GPS are available, 
motivates researchers to find heuristic/novel positioning 
and path planning methods; even without the necessity 
for external position fixing devices (Aminzadeh & Amiri 
Atashgah, 2018). However, any failure in navigation sub-
systems also may cause such circumstances. To perform-
such missions, the implementation and utilization of a 
hybrid navigation and path planning methodis a must. 
Regarding the navigation tasks in unknown environ-
ments, Simultaneous Localization and Mapping (SLAM), 
has been an ever-growing method in recent years.

SLAM resources are mainly dedicated to the follow-
ing subject matters; some articles concentrate on map 
accuracy by using different filters (Bahraini et al., 2018; 
F. Zhang et al., 2018; Y. Zhang et al., 2018). A number of 
them focus on SLAM consistency based on filter and ob-
servability analysis (Barrau & Bonnabel, 2015; G. Huang 
et al., 2008; G. P. Huang et al., 2009). Data association is 

another issue that is investigated by Leonard and Zoubir 
(2019), Yousif et al. (2015), G. Zhang et al. (2015).

Improvement of accuracy in SLAM by map enhance-
ment is also of great interest. One of the methods for 
improving the accuracy of localization is system observ-
ability analysis. Many references deal with observability. 
Concerning the goal of this paper, these resources can 
be classified into three categories; The first class of works 
uses observability in miscellaneous applications to accu-
rately define the parameters of the system model to gain 
more exact output results. Serpas et al. (2013) use observ-
ability criteria to determine the optimal position of the 
sensors for network optimization. In Lystianingrum et al. 
(2014) the observability analysis for battery temperature 
measurements is proposed by defining the optimal num-
ber of batteries and their position to decrease the cost. 
The authors in Van Den Berg et  al. (2000) employ ob-
servability analysis to get the optimal position of tabular 
chemical reactor sensors. In another work, a different ap-
proach for observability and its condition is investigated 
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for biochemical nonlinear systems (Aguilar-López et al., 
2010). Regarding aerial and ground robots’ navigation 
and state estimation, another category of observability-
related research can be found in Bryson and Sukkarieh 
(2008), Huang et  al. (2017), Batista et  al. (2011), Hesch 
et al. (2013), Xu et al. (2020).

The next category of resources is dedicated to observ-
ability analysis for SLAM and navigation. In this type 
ofwork, observability is used for two purposes; some fo-
cus on essential conditions for SLAM observability and 
determination of the degree of observability in different 
environments. In L. Huang et  al. (2017) employed the 
observability concept to determine the appropriate dis-
tribution of landmarks in the visual navigation system. 
Observability conditions and the effect of landmark ar-
rangement on the observability of the system are consid-
ered in Chakraborty et al. (2017), Sharma et al. (2012), as 
well. The second class is articles that imply observability 
for real-time path planning in SLAM. In these articles, 
observability is used to define robot motion direction in 
unknown environments. Carlone et al. (2014) solve active 
path planning in SLAM by expected information from 
policy to select the best strategy for robot motion. An-
other approach for path planning in SLAM is coverage 
improvement that is implemented by the combination of 
model predictive control with the direction of robot mo-
tion to the desired location (Leung et al., 2006). A cogni-
tive-based adaptive optimization algorithm for real-time 
active SLAM is also employed in Kalogeiton et al. (2019). 
They demonstrated that this algorithm has more robust-
ness and efficiency in comparison with robot random 
movement. In the following, Sharma has used receding 
horizon control and information matrix to define the best 
path (Sharma, 2014); The path is planned in such a way 
that in each step, information achieved from sensors is 
increased. Moreover, Bryson and Sukkarieh (2008) are 
employing entropy as an information-based measure-
ment to select the optimal trajectory for robot motion. 
In their research, observability is used as a decision rule 
to aid the path planning process.

Regarding path planning, which is of great interest in 
resources, Wen et al. (2020) improved path planning tasks 
in SLAM through dueling deep reinforcement learning al-
gorithm. Path planning for exploring unknown environ-
ments is mainly implemented by A* and D* algorithms 
(Hasegawa & Fujimoto, 2016; Maurovic et al., 2018). Opti-
mal path planning is another approach for optimization of 
mission time and traveled distance (Clemens et al., 2016; 
Fethi et al., 2018).

As priorly stated, this work is dedicated to concur-
rent path planning and navigation of an aerial robot’s 
motion in real-time, based on observability analysis in 
an unknown environment with specific distribution of 
landmarks, so that an accurate map of the environment 
is achieved. The idea is such that, the aerial robot starts 
from an initial point and based on the pattern of land-
marks, follows the generated path to reach a zone of 

interest. For this goal, the paper is organized as follows. 
In section 1 system development is described including 
positioning, observability, and path planning and then 
the proposed method is presented. In sections 2 and 3, 
simulations and results are presented and discussed. Fi-
nally, in the last section, conclusions are obtainable.

1. Theoretical framework

In the proposed method, it is assumed that an auton-
omous robot starts from an initial unknown point and 
moves along the path with the most observability to the 
destination while making an exact map of the environ-
ment. To perform this mission, the robot uses IMU and a 
camera to detect the landmarks. In each step, the task of 
estimating the robot and features position by an Extended 
Kalman filter (EKF-SLAM) is performed. The features are 
predetermined landmarks that the robot can recognize by 
image processing/data association algorithms from other 
landmarks that exist in the environment. These artificial 
features are arranged/distributed in the mission environ-
ment to guide the robot to the destination area. Hence, in 
this mission, the detection of features and their arrange-
ment are very critical. Then, the goal is to determine the 
angle of robot motion in each step to guide the robot on 
a path that gives an accurate map of the outdoor environ-
ment. Accordingly, in this work, a novel method is pro-
posed for concurrent real-time path planning and naviga-
tion using eigenvalues and eigenvectors of the observabil-
ity Gramian via an EKF-SLAM; Hence, more observability 
in the path aids the filter to make a better estimation of 
the state variables. The proposed method can be used for 
real-time path planning in different applications such as 
ground and aerial vehicles, and also in marine (on Earth 
or other planets); wherein a robot starts from an initial 
unknown/known point and plans to arrive at a destination 
area for a specific task, service, or a self-rescue district 
(Figure 1).

In the following sections, basic concepts and assump-
tions in different aspects of the work are presented.

Figure 1. The CPPAP idea is to attain a zone of interest
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1.1. Positioning

One of the positioning methods in a GNSS denied envi-
ronment is visual-based navigation (Atashgah & Malaek, 
2013). This method depends on how much the environ-
ment is known. The importance of this cognition is so 
much that it is used as a criterion for visual navigation 
methods classification. Myhre (2018) categorize these 
methods into non-priori (for an unknown environment) 
and priori methods (for a known environment). Non-pri-
ori methods are classified as mapless and SLAM methods. 
In this paper, SLAM is used for robot navigation in the 
environment.

One of the solutions for the SLAM problem is em-
ploying various types of filters. Different filters such as 
Kalman, particle, and information filters are proposed for 
SLAM, and most of them are based on the Bayes filter 
(Fraundorfer & Scaramuzza, 2012; Kurt-Yavuz & Yavuz, 
2012; Bahraini et al., 2018). Kurt-Yavuz and Yavuz (2012) 
have compared different filters’ performance in SLAM. 
They showed that the Root Mean Square Error (RMSE) 
for FastSLAM and UFastSLAM by 50 particles is ap-
proximately equal to EKF estimation. Correspondingly, 
UFastSLAM is known as the most efficient method with 
a Least Mean Square Error (LMSE) and the slowest one. 
In this manuscript, when SLAM is utilized for real-time 
operation, low complexity and delay in calculations are 
important. Accordingly, and due to the almost expected 
precision of the estimation, the EKF-SLAM is selected for 
the implementation of the proposed method.

EKF-SLAM
Measurement of all system states or direct measurement 
of some states is not practical because the system becomes 
more complex and expensive. Moreover, because of noise 
in sensor measurements and environmental disturbances, 
robot measurements during the time are not exact. Sub-
sequently, using estimators to measure data indirectly or 
decrease measurement errors and increase the precision of 
the calculation is necessary. As mentioned above, in this 
work, direct measurement of position is not possible. So 
it should be calculated by velocity measurements which 
contain measurement noises. Therefore, EKF is used as a 
SLAM solution and includes two main steps; prediction 
and update. In prediction (Eq. (1) to Eq. (4)), state x and 
covariance P values are defined as follows:

1 1
ˆ ˆ

n n n
− +
+ += +X FX w ; (1)

1 1 1 1n k n n+ + + += +Z H X v ; (2)

1 1 1
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where F and H are Jacobian of motion and sensor 
measurement models, wn and vn are Gaussian processes 
and measurement noises with zero Mean and Q and R 
are noise covariances. Furthermore, the motion model 
is as follows:
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In Eq. (5), θ, V, and ω represent the heading angle, to-
tal linear velocity in the xy plane, and vertical angular ve-
locity, respectively. Accordingly, in the following, the state 
vector includes robot position and heading angle (a 3*1 
matrix), and landmarks position in the field of view of the 
robot (Eq. (6)); n shows the number of landmarks seen by 
the robot at each step. The observation model includes the 
range and bearing angles of a landmark (Eq. (7)). Finally, 
the augmented state vector is defined as follows:
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where Po, θ, and mi indicate the vehicle position vector, 
heading angle, and the ith landmark position vector, re-
spectively. In the observation model, ρi and ϕi are range 
and bearing angle to the ith landmark. In the following, 
the updated values of the state and covariance matrix are 
determined by Eq. (8) and Eq. (9), as follows:
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1.2. Observability analysis

Observability analysis of the system exhibits that measure-
ment of which output variables gives more precision for 
estimation of the input variables. More observability of the 
system means we can estimate the states more precisely; 
accordingly, in SLAM, if the robot moves in the direction 
with more observability, a better estimation of the state 
variables is gained. This is the main contribution of this 
work to the concurrent navigation and path planning of 
the robot. Concisely, the proposed method uses this rule 
to determine the robot path so that more accuracy in pro-
viding a map of the environment is gained.

Linear observability analysis
Different methods are proposed for linear systems 
(Eq. (10)) observability analysis. The two most com-
mon methods are the observability matrix and Gramian 
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(Eq. (11) and Eq. (12)). If the observability matrix is full 
rank, the system is observable. Likewise, if the Gramian 
matrix has a positive determinant, it is observable, and 
how much this determinant is greater, the degree of ob-
servability increases (Chen, 1999). The related mathemati-
cal equations are as follows:
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In which, x and y are state and output vectors, u is 
control input, o and Wo are observability and gram matri-
ces and ϕ is the State Transition Matrix (STM).

Nonlinear observability analysis
The observability of a nonlinear system, compared to a 
linear one, is more challenging. Nevertheless, different ap-
proaches for nonlinear system observability analysis are 
proposed. There are two steps for system observability 
determination: selection of the matrix and proper criteria 
for interpretation of the degree of observability. Four ma-
trices are proposed in the literature for nonlinear system 
observability, including observability (Nijmeijer & Schaft, 
1990), gram (Lall et  al., 2002) error covariance matrix 
(Hahn et al., 2003; Ham & Grover Brown, 1983), and Lie 
derivative matrix (Hermann et  al., 1977). The full rank 
of the observability matrix (number of states equal to the 
rank of the matrix) shows the system is observable. This 
condition for observability Gramian has the same mean-
ing. Rank condition only replies to observability by yes 
or no, but some conditions/criteria determine the degree 
of observability. Determinant, trace, condition number, 
singular values, and eigenvalues are criteria used for the 
assessment of the observability gained from the Gramian 
matrix (Eq. (13) to Eq. (15)).
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where maxσ  and minσ  are the maximum and mini-
mum singular values of the observability Gramian. The 
More value of the determinants, eigenvalues, trace, and 
singular values conclude the larger observability and more 
accurate estimation. In contrast, the lower value of the 
condition number shows a greater degree of observabil-

ity. The covariance matrix is used by different criteria such 
as eigenvalues (Ham et al., 1983) and observability rank 
(Hahn et al., 2003). Another method for the determina-
tion of nonlinear observability is the Lie derivative (Huang 
et al., 2017; Lee et al., 2006; Sharma et al., 2012; Butcher 
et al., 2017; Xu et al., 2020).

Among different criteria investigated for the system 
observability, eigenvalues and eigenvectors provide infor-
mation about the degree and direction of observability. 
This direction has valuable information for SLAM path 
planning that helps the robot to move toward the direc-
tion in which its estimation is more exact than the other 
paths. More details of the method are described in the 
next parts.

1.3. Path planning

Path planning determines the path (x and y position) that 
the robot moves through it, to reach the goal. Different 
methods for path planning of autonomous robots are 
proposed in the literature. Each of them with a specific 
rule. Random methods such as A* and D* (Fu et al., 2018; 
Zammit & van Kampen, 2018), potential field method 
(Rasekhipour et  al., 2017; Chen et  al., 2014), and other 
methods based on sampling such as RRT and RRT* (Li 
et  al., 2020; Zammit & van Kampen, 2018; Perez et  al., 
2012), roadmap (Wang & Cai, 2018; Niu et al., 2019) and 
heuristic methods (Qu et al., 2020; Bakdi et al., 2017; Fa-
koor et al., 2016) are some type of these methods.

González et al. (2016) reviewed different approaches 
for autonomous robot path planning and categorized 
them into four groups based on the graph search algo-
rithms, sampling, interpolation, and numerical optimiza-
tion (González et al., 2016). According to the results, the 
interpolation and graph search methods are extensively 
used compared to the other ones, due to their ability to 
produce an enhanced map of the environment and also 
fast and optimized implementation in real-time projects. 
In another work, Patle et al. (2019) surveyed strategies for 
mobile robot path planning and categorized them into 
classic, reactive (intelligent), and hybrid methods. Their 
research illustrates that, even though reactive methods are 
more robust in an uncertain environment and have better 
performance for real-time projects, they are not proper 
choices for low-cost robots; because of the long time and 
high cost of calculations.

Among classic methods, the potential field method 
compromises more utilization which usually is used offline. 
In this method, goals and obstacles are modeled as attrac-
tive and repellent fields, where the robot moves away from 
obstacles as far as possible and tends toward the goal. In 
all of those methods, the main goal is finding the shortest 
path from a start point to the end while avoiding obstacles. 
Mac et  al. (2016) presented the strengths and drawbacks 
of heuristic methods such as fuzzy, neuro-fuzzy, genetic al-
gorithm, and particle swarm optimization. Aggarwal and 
Kumar (2020) had a different approach and categorized 
these methods into three groups concluding representative, 
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cooperative and non-cooperative, and compared them from 
different points of view such as path length, cost, time and 
energy efficiency, robustness, and collision avoidance. Sub-
jects matter in SLAM, the accuracy of the estimation and 
preparing an exact map of the environment is very impor-
tant. Hence, developing a new method of real-time path 
planning is an essential task in the area.

All of the above-mentioned methods try to find the 
optimal path from the start point to the end goal while 
avoiding the obstacles in a graphed environment. This ar-
ticle proposes a different approach for autonomous robot 
path planning; starting from an initial known/unknown 
point and heading to a destination area than a target point. 
Therefore, employing a real-time path planning method is 
a must. According to the reviewed path planning methods 
(in the introduction section), only a few methods are ap-
propriate for this aim.

The Proposed CPPAP
For 2D path planning, while the flight altitude is attained 
constant, the information of the robot velocity and head-
ing suffice. According to the observability analysis, when 
a system comprises more degree of observability, the state 
vector can be predicted more accurately by measuring the 
outputs and observations. As stated before, the main idea 
of the proposed method is finding a heading angle so that 
the robot moves in the direction that system observability 
becomes maximum and therefore an accurate map of the 
environment is achieved.

To achieve the defined goal, a new method based on 
eigenvectors of the observability Gramian is proposed. 
By calculation of the observability matrix (gained from 
Eq. (11)), the Gramian matrix with a decent approxima-
tion is attained by Eq. (16).

Wo = OT O. (16)

In this equation, O is the observability matrix and is 
calculated by Eq. (11). Regarding the calculation of the 
observability matrix, the coefficient matrices, A and C, 
which are Jacobians of the motion and observation models 
are determined as below.
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where v, w, and θ  the linear and angular velocity and the 
robot direction angle; and q, xδ , and yδ  as squares of 
the distance from the robot to a landmark and distance 
in the x and y-direction, respectively. In each step of the 
motion, the observability degree for all landmarks is 
achieved by determining eigenvalues. The eigenvector of 
the found biggest eigenvalue shows the most observable 
direction in each step (Eq. (19) and Eq. (20)). Supposing 
at time ti, n landmarks are in robot’s view:

( )max 1max . .ti ti ti n− − −λ = λ …λ ; (19)

( )max max
mx

ti ti ti
my

v
v v

v− −
 

= λ =  
  

. (20)

 arctan my
obs

mx

V

V

 
θ =   

 
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So the rotation angle is defined as

rot robot eigen∆θ = θ − θ . (22)

As path planning and EKF-SLAM both are based on 
feature identification, any problem with it, causes the ro-
bot to go to an unknown goal. In the implementation of 
CPPAP, it’s supposed that the robot can’t move backward 
and the rotation angle is restricted between ±90 degrees. 
The proposed method is thoroughly described in Table 1 
and Figure 2, respectively.

Table 1. Algorithm of the proposed CPPAP (Algorithm 1)
Mission Starts
EKF-SLAM Starts
Path-Planning Starts
Make Observability dataset

Fori=1:numLmk do
Calculate observability matrix (O) according to Eq. (13).
Calculate observability Gramian (Wo) by Eq. (18)
Determine max eigenvalue of W0

End
Search the most observable direction

Find the max eigenvalue of all eigenvalues in each step
Select the eigenvector of the max eigenvalue

θ rot = θMOD – θrob (MOD: most observable direction)
Perform Remaining EKF-SLAM Tasks
Path-Planning Ends
EKF-SLAM Ends
Mission Decision Making Tasks
Mission Ends
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2. Simulations and results

Simulations have two goals; the first aim is performance 
evaluation of the proposed method by comparing it with 
an existing random SLAM, in the same environment with 
a similar distribution of the landmarks. Another goal is an 
investigation into the effect of feature distribution/pattern 
in the environment on system observability. To this end, 
two types of landmark distributions, such as triangular 
and wave-like forms, with approximately 120 features are 
adopted. It should be noted that each feature is placed at 
an approximately identical distance from its neighbors in 
all distribution patterns so that identical conditions for ef-
ficiency analysis of the methods are prepared. Moreover, 
to have a decent performance evaluation, the implemented 
EKF-SLAM results are compared with the true (error-free) 
path and dead reckoning predictions (Figures 3 and 4).

In the following, Table 2 contains the simulation pa-
rameters’ values and conditions. Furthermore, to have 
an identical metric for comparing the efficiency of the 
methods in simulations, the initial state of the robot and 
covariance matrix is assumed as, [–10 –20 0] and I3×3, re-
spectively.

Table 2. Simulation conditions

Parameter Value Unit

Max. Robot View Range 85 m
Cov. Matrix Initial Value I3×3 –
Range Noise Std 0.5 m
Bearing Noise Std 0.573 degree

Figure 2. Block diagram of the proposed CPPAP

Figure 3. Simulation results for a triangular pattern of landmarks

(a) Random SLAM (b) CPPAP
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(a) Random SLAM (b) CPPAP

Figure 4. Simulation results for a sinusoidal/wave-like pattern of landmarks
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Figure 5. Performance evaluation for a triangular pattern of landmarks
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Figure 6. Performance evaluation for a sinusoidal/wave-like pattern of landmarks
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To simulate the outdoor environment, wide variations 
in the x- and y- directions are considered for the robot’s 
motion. In both scenarios, robot motion starts at posi-
tion [0, 0], and the goal is an area that is fixed on the x 
component at 300 and is variable in the y-direction. The y 
component in CPPAP is determined by the observability 
value at that step. Simulations are conducted for 800 sec-
onds by a 0.02-second time step.

In the following, errors in the robot’s x, and y position 
directions, and heading angle, for both scenarios (trian-
gular and sinusoidal/wave-like patterns) and both path 
planning methods (random SLAM and the CPPAP) are 
demonstrated in Figures 5 and 6.

3. Discussions

The main goal of a path planning method, based on ob-
servability, is improvement of the accuracy of the fea-
tures’ localization in the mapping process. Consequently, 
to compare the accuracy of the EKF-SLAM in both path 
planning methods and both scenarios, the covariance ma-
trix of the EKF-SLAM (Tao et al., 2007) is used. Therefore, 
in each step of the simulation, the trace of the covariance 
matrix is calculated; The accumulated error values dem-
onstrate the accuracy along the whole path. This value is 
used as a criterion for map accuracy assessment. Figure 3 
shows the path that robot moves from the start point to 
the destination area by both random SLAM and CPPAP 
methods for triangular distribution. Subsequently, Figure 
4 exhibits the results for a wave-like landmark distribu-
tion. As is seen in Figures 3 and 4, by the employment of 
the CPPAP method, the robot moves in the environment 
merely exploiting features guidance to the goal destination 
area while realizing more new features with more observ-
ability in the path. In path planning with this algorithm, 
the robot moves toward the new unknown features which 
are away from it. On the other hand, the robot moves 
within the borders which is determined by the placement 
of the features; Where in the sections attempt to decrease 
the uncertainties in the mapping process.

To have an estimation of error in the EKF-SLAM-
based path, RMSE of robot position (in x and y directions) 
is calculated, as well. Trace of the covariance matrix shows 
the overall mean square error. Therefore, the accuracy of 
the two methods is compared by the utilization of the 
trace of the covariance matrix and RMSE. According to 
the results displayed in Table 3, the trace of the covariance 
in the CPPAP method is less than the random SLAM, in 
both feature distributions. Similarly, the proposed method 

has less RMSE that confirms the outcomes from the trace 
of covariance. Moreover, the CPPAP is faster than the ran-
dom method.

Comparison between two distributions shows that 
wave-like distribution gains more observability in the path 
and leads to more accurate path planning. Also, RMSE 
in the triangular distribution has an increasing trend for 
both methods while this trend for the sinusoidal pattern 
increases at the beginning and continues uniformly. The 
error trend especially in a triangular pattern has similar 
behavior to robot movement due to the number of visited/
seen landmarks in the robot’s field of view.

Another outcome is that the average number of seen 
features in the robot path for wave-like and triangular dis-
tributions is 32.9 and 42.2, respectively. Because the land-
marks/features are the basis of the CPPAP method, the 
number of seen features in each step affects the efficiency 
of the planned path, as well. As is shown in Figure 7, in 
random methods the number of seen landmarks exhibits 
a smooth trend while in the CPPAP method it shows a 
fluctuating trend. Accordingly, it can be concluded that 
more features in the robot field of view necessarily don’t 
lead to more accurate mapping.

As Table  3 demonstrates, path planning by the ran-
dom method desires more time than the proposed CPPAP 
method. Since in the random path planning method the 
robot moves randomly in different directions with a small 
amount of deviation, the time to reach to destination area 
is more than the time needed for the CPPAP method. 
Consequently, the proposed method takes more time to 
perform the mission relative to the random method.

Table 3. Performance evaluation outcomes

Pattern Type Triangular Triangular Wave-like Wave-like

Path planning method CPPAP Random CPPAP Random
Trace of Covariance 3.46 7.66 2.71 5.88
Time to reach the goal (s) 700 1876 590 1889
Path RMSE (x and y error) 2.4 4.06 0.84 1.89

Figure 7. Number of visited landmarks for all conditions
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Conclusions

Using the proposed method, the observability of the 
system increases and precise estimation of the robot 
and landmarks’ position in a feature-based SLAM is en-
hanced. Besides, simulation experiments of EKF-SLAM 
path planning for two different geometries of the artifi-
cially distributed landmarks were conducted by the Gra-
mian covariance and random SLAM methods. Results 
indicated that the map achieved by observability-based 
path planning is more accurate and more computation-
ally efficient than the random-based SLAM one. It is 
worth noting that by using the proposed approach and 
with the desired distribution of the landmarks, some kind 
of obstacle avoidance also can be conducted. Moreover, 
this type of obstacle avoidance method can be a research 
area for future works. To enrich the proposed activity, the 
following topics can be put on the agenda: (a) SITL/HITL 
implementation and evaluations of the idea, (b) develop-
ment of the work in a multi-agent environment, and lastly 
(c), the inclusion of obstacles and dynamic landmarks to 
the scenes and evaluation of the idea for collision avoid-
ance tasks.
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Notations

F – Jacobian of robot motion model;
H – Jacobian of sensor model;
K – Kalman gain;
m(k) – landmarks position;
O – observability matrix;
P(k) – robot position;
Q – Covariance of the process noise;
R – Covariance of the measurement noise;
vn – measurement noise;
wn – process noise;
Wo – Gramian; 
X – state matrix;
Z – observation matrix;
Θ(k) – robot heading angle;
σmin – minimum singular value;
σmax – maximum singular value;
ϕ(t) – state transition matrix.

Abbreviations

CN – Condition Number;
CPPAP – Concurrent Path Planning and Positioning;
EKF – Extended Kalman Filter;
GNSS – Global Navigation Satellite Systems;
LMSE – Least Mean Square Error;
NS – near singularity; 
RMSE – Root Mean Square Error;
SLAM – Simultaneously Localization and Mapping;
STM – State Transition Matrix;
Std – Standard Deviation.


