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Abstract. Airports are tasked with counting and reporting their operations at least yearly. The counts are used at the local 
and national level to schedule maintenance, for research, and to receive funds, making their accuracy important. Histori-
cally, methods for counting operations at non-towered airports have relied on additional equipment at the airport or statis-
tical estimates. In this work, we introduce a method to use crowd-sourced Automatic Dependent Surveillance – Broadcast 
(ADS-B) data from the OpenSky network to automatically count airport operations and report it separated by takeoffs and 
landings. We use two airports as case studies – Tulsa International Airport (TUL) and Purdue University Airport (LAF) – 
and compare the estimated operation counts from the ADS-B data algorithm to numbers reported through the Federal 
Aviation Administration’s (FAA) Air Traffic Activity Data System (ATADS).
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Introduction

Airport operation counts, i.e. the number of takeoffs and 
landings at an airport, help determine government fund-
ing, airport needs, and potential system improvements, 
justify infrastructure such as nearby control towers and 
navigational aids, and are used in environmental, safety, 
and operational studies. Airport managers also use op-
eration counts for forecasting and decision making, such 
as in runway closures and maintenance. Additionally, 
more particular counts that include the type of opera-
tion (scheduled, commercial, training, etc.) are helpful in 
determining and supporting the necessary services for 
each airport. In the United States, the Federal Aviation 
Administration (FAA) and the Department of Transporta-
tion (DOT) use operation counts to maintain a plan for 
developing public-use airports, the National Plan for In-
tegrated Airport Systems (NPIAS) (Federal Aviation Ad-
ministration, 2018). Historically, such operation counts 
have been counted or estimated and reported on the Air-
port Master Record (FAA Form 5010). For airports with 
control towers, recording the number of operations they 
observe is a relatively easy task that is considered to result 
in reliable numbers while the tower is in operation. Simi-
larly, flights under Instrument Flight Rules (IFR) can be 

counted through the air traffic control system. However, 
during non-operating hours, and at non-towered airports, 
those numbers can only be estimated based on statistical 
and mathematical models, resulting in a lack of accurate 
records (Federal Aviation Administration, 2007). Airports 
and research have historically used various methods to 
estimate operations to various levels of accuracy, mostly 
based on observed relationships and ratios of known air-
craft and/or operations to an estimated number of total 
operations (Muia & Johnson, 2015; Johnson & Gu, 2017; 
Muia, 2007).

Past work evaluated the accuracy of statistical methods 
as well as aircraft traffic technologies and found that the 
simple methods of estimating operations using ratios can-
not be supported by test results and recommended using 
activity sampling to estimate operations (Muia & Johnson, 
2015). Muia and Johnson (2015) also recommended that 
counting technology needs to adapt to consider factors 
such as airfield layout and expected fleet. The addition of 
ADS-B transponders to the majority of the US-registered 
fleet provides us with an opportunity to validate past mod-
els with potentially more reliable data. The work discussed 
in this paper aims to use ADS-B data to automatically es-
timate operations without the need for extra equipment 
or input from human operators such as airport managers 
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or controllers. While the methods discussed are applicable 
to all airports for which ADS-B data is available, we test 
our algorithms at U.S. airports because of the ADS-B Out 
mandate which took effect on January 1, 2020. This man-
date dictated that any aircraft operating in airspace defined 
in 14 CFR § 91.225 is required to be equipped with an 
ADS-B Out system. Airports at locations without ADS-B 
mandates are not appropriate testing locations because air-
craft (especially smaller and older aircraft) are unlikely to 
be equipped with ADS-B transponders, creating large gaps 
between the counts of methods that depend on the data 
and those that are more observational in nature.

In this paper, we discuss the literature on currently 
available counting techniques (Section 1) and introduce 
algorithms to query a crowd-sourced database of ASD-B 
information to count operations at user-selected airports 
(Section 2). In Section 3, we test our algorithms on data 
from two airports: Purdue University (LAF), a Class D 
airport in Indiana, and Tulsa International Airport (TUL), 
a Class C airport in Oklahoma. Section 4 compares counts 
using our method to FAA counts at LAF over a period 
of 3.5 years to examine changes that resulted from the 
2020 ADS-B Out Mandate. The last sections discuss our 
conclusions and limitations and recommend future work 
respectively.

1. Current counting techniques

A National Association of State Aviation Officials 
(NASAO) survey conducted in late 2006 and distributed 
to fifty state aviation agencies, seven airports, and four 
metropolitan or regional planning organizations (MPOs) 
identified methods used for estimating aircraft operations 
at non-towered airports as well as uses of the information 
(Muia, 2007). The survey found that the most commonly 
used method for obtaining operation counts at non-tow-
ered airports is simply asking the airport manager or other 
airport personnel what they believe that value should be, 
leading to over-estimated counts. Using airport guest logs 
and fuel sales, on the other hand, will not track all traf-
fic – local pilots are not likely to sign the guest log, tran-
sient pilots may not purchase fuel, and touch-and-goes are 
not accounted for with either method. Acoustical coun-
ters collect information without the need for a human, 
but normally only record departures. These counters use 
a microphone near the runway which picks up the sound 
of departing aircraft at full engine power. The recordings 
are then post-processed to obtain the number of depar-
tures, which when doubled theoretically provides the total 
number of operations (Ford & Shirack, 1985). Acoustical 
counters are appropriate for single-runway airports with 
consistently loud traffic, such as jet-powered, turboprop, 
or multi-engine piston aircraft. Long runways (as short 
as 3,000 ft) require multiple counters (Muia & Johnson, 
2015). While expensive, acoustical counters are used most 
often in literature (Muia, 2007). Pneumatic counters con-
sist of a rubber tube connected to a counter which uses 

changes in air pressure as aircraft are rolling over it to 
count the number of operations. Pneumatic counters are 
mostly used on taxiways to observe ground movement to 
and from taxiways, to avoid excessive wear at faster speeds 
on runways. As a result, they are not able to count touch 
and go landings (Ford & Shirack, 1985). Cameras and 
video image detection methods are appropriate for cen-
tralized airports, with locations that are unavoidable to 
inbound or outgoing traffic, such as access points for ter-
minal and hangar areas. These methods do not account for 
touch and go landings and are a lot more expensive than 
other methods. Visual observations are labor-intensive 
and infeasible for year-round counts but result in reliable 
observations.

Because of the cost associated with mechanical count-
ing methods, researchers and airport managers have re-
sorted to mathematical and statistical models. Multiplying 
an estimate for the operations per based aircraft (OPBA) 
by the number of aircraft based at the airport of inter-
est, results in an estimate for the total operations at that 
airport. Similarly, an estimated ratio of instrument flight 
plans to total operations (IFPTO) may be used since flights 
on an IFR-plan are counted through the system. Muia and 
Johnson (2015) attempted to find consistent OPBA and 
IFPTO numbers from information and counts at towered 
airports that can be applied to similar non-towered air-
ports. Through their work, they identified that statistically 
extrapolating four seasonal two-week samples of activity 
into a year-long operations count was significantly more 
accurate than any of the ratios.

Recent research has leveraged low-cost data-collecting 
technology to count operations at non-towered airports 
with limited personnel (Mott, 2018; Mott & Bullock, 2018). 
The technology uses elementary Mode S and Mode C sig-
nals, which do not report aircraft position but do report 
aircraft barometric altitude. Mott and Bullock (2018) use 
the reported altitude and the amplitude of the signal to es-
timate aircraft position. The method provided counts with-
in 2.2% of actual operations during the evaluation period, 
but still requires the airport to obtain and later potentially 
maintain additional equipment. The developed transpond-
er data system has been used for various applications such 
as measuring aircraft fleet mix (Yang et al., 2021) and for 
aircraft performance models (Yang & Mott, 2021).

2. ADS-B counting method

The OpenSky Network1 provides open access to real-time 
ADS-B and Mode S data through receivers supported by 
volunteers around the world. The receivers are connect-
ed to the Internet and all transmitted data is archived in 
OpenSky’s database. The OpenSky Network provides real-
time data to the public through a map visualization, and 
historical data to researchers who request access through 
an API and an Impala Shell (Schäfer et al., 2014).

1 https://opensky-network.org

https://opensky-network.org
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ADS-B messages are decoded and interpreted before 
being stored in the database as state vectors. Each state 
vector contains information on identifi cation, position, 
and velocity. Identifi cation consists of the transponder’s 
ICAO address, and potentially the aircraft ’s call sign. Posi-
tion is stored in terms of latitude, longitude, and altitude. 
Velocity is reported in terms of lateral rate and a vertical 
rate. OpenSky also stores metadata such as timestamps 
(Schäfer et al., 2014).

Th e developed algorithms take advantage of the data-
base structure and information to convert the state vectors 
into fl ights. As shown in Figure 1, there are two parts to 
the algorithm: the fi rst determines and runs the necessary 

queries from the OpenSky Network database to retrieve 
data; the second post-processes the retrieved data to iden-
tify takeoff s and landings and count the number of total 
operations. Th e user is able to change parameters that de-
termine how the algorithm operates (the size of the search 
box, the length of the time periods, saving and counting 
methods, etc.) but is only required to input two variables: 
the airport and the time period of interest.

Th e airport is determined by its three-letter identifi er, 
and the time period from start and end local times. Th e 
user’s airport ID input is used to retrieve information for 
the runways that make up that airport. A runway informa-
tion database (United States Department of Transporta-
tion, 2020) provides the latitude and longitude of the end 
point of each runway, which we use to build a bounding 
box encircling all runways. Th e user’s time input is fi rst 
converted to Central Universal Time (UTC) to correspond 
to the OpenSky timezone, and then separated into one-
hour periods to optimize the query. To improve the query 
performance, OpenSky clusters all data recorded in one-
hour chunks, thus allowing distributed parallel processing 
of queries in an effi  cient manner. Th e pyopensky library 
creates an interface between the OpenSky Network data-
base of historical data and our algorithms and allows us to 
download the requested state vectors by searching based 
on latitude/longitude and time bounds (Sun & Hoekstra, 
2019; Sun et al., 2019).

ADS-B data is inherently inconsistent in its accuracy 
and highly dependent on the aircraft ’s sensors. Th e data 
retrieved from the query function includes missing data-
points and outliers. In this work, we used a moving aver-
age to remove some of the inaccurate behavior. We tried 
moving averages with varied memory (slower and faster 

Figur  e 1. Th e developed algorithm requires the user to select 
an airport and a time frame, and outputs the number of 

takeoff s and landings at all runways of the selected airport 
during that time. Th e operations required to query the 
OpenSky Network (all functions before the Operations 

Counter function) are depicted in Figure 2. Pseudocode for the 
Operations Counter function is provided in Figure 4

Figure  2. Th e process of automatically building and running a query for an airport relies on fi rst constraining 
the data temporally and geographically. Th e algorithm takes the airport ID and a time period as user inputs to 
build a boundary box and generate and run a query. Th e query results in the fl ights structure, which contains 

all transmissions received during the specifi ed time in the boundary box, and is used by the Operations Counter 
post-processing algorithm to count the number of takeoff s and landings
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change) and arrived to an 8 second moving average as a 
tradeoff  between losing data and having data that is not 
suffi  ciently smoothed. We then detect landings and take-
off s based on the aircraft ’s reported barometric altitude 
with respect to a pre-determined threshold.

Th ere are three possible landing/takeoff  combinations 
that the algorithm has to capture: (1)  starting from the 
ground and taking off  to depart or join the pattern, (2) start-
ing airborne and descending to land, and (3) a touch and 
go. All three cases are indicated in Figure 3 with real-life 

examples from Tulsa International Airport (TUL) and Pur-
due University Airport (LAF). Both airports were chosen 
for having a good coverage by OpenSky. Figure 4 shows 
the algorithm in pseudocode for the takeoff /landing detec-
tion process and depicts the counter changes for the three 
aforementioned cases. Each time we observe two consecu-
tive data points for the same aircraft  with the altitude below 
and above the threshold respectively, the landing and takeoff  
counts both increase by one. Additional landings and take-
off s can only occur at the beginning or end of the data.

Figure  3. Th ere are three operational scenarios that we need to account for in detection algorithms. Th e aircraft  can 
(1) start its fl ight track on the ground and become airborne, (2) start airborne and land, or (3) takeoff  and land in the 

same track, i.e. a touch and go. We defi ne a fl ight track in the context of this algorithm as the period from the fi rst 
time the aircraft  is detected in the boundary box to the time it departed the boundary box or landed. Th e real fl ights 

(1) and (2) on the right are from TUL, and (3) is from LAF. Th ese real fl ight examples also showcase some of the 
problems we encounter with the data with regards to jumps and resolution

Figure 4 . Th e pseudocode for the landing/takeoff  detection indicates how the algorithm adjusts the landings and takeoff s 
counters accordingly for each of the three cases depicted in Figure 3. In Case (1), the algorithm will eventually detect a 

takeoff . However, since the fl ight starts on the ground, we start the landings counter at –1 to prevent the extra lading from 
the initial altitude being below the threshold. Case (2) is more straight-forward, with the aircraft  being above the specifi ed 
altitude threshold until landing. Th e algorithm ignores the if statement counting touch and goes, in black. In Case (3) the 
aircraft  starts airborne but the fl ight track does not end with the landing, making that portion of the fl ight a touch and go
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3. Testing and validation

Choosing airports for testing in the United States is chal-
lenging due to the multiple selection constraints. For com-
parison purposes, airports selected must have a control 
tower. Air traffi  c controllers report the number of opera-
tions daily to the FAA’s Operations Network (OPSNET), 
which makes the data available in the Air Traffi  c Activity 
Data System (ATADS), providing us with a baseline against 
which to measure algorithm accuracy. Additionally, while 
the 2020 ADS-B mandate (Automatic Dependent Surveil-
lance-Broadcast, 2019) has encouraged and incentivized 
most owners to equip their aircraft  with transponders, 
they are not required in all airspace. Lastly, OpenSky relies 
on crowd-sourced data from receivers spread around the 
world, and reception in the United States is not as wide 
as Europe, further limiting the airports we can sample. 
For example, Aurora Municipal Airport (ARR) in Illinois 
has a full-time control tower and is within the Chicago 
Class B airspace, making ADS-B use mandatory, but does 
not have adequate coverage from OpenSky to be useful. 
While large airports like Chicago O’Hare (ORD) fulfi ll all 
requirements, the extensive number of operations makes 
historical data downloads impractical at the testing and 
validation stage of the research. We have selected Tulsa In-
ternational Airport (TUL), a Class C airspace airport, for 
most of our testing because it fulfi ls all requirements and 
has a reasonable amount of traffi  c. We added Purdue Uni-
versity Airport (LAF), a Class D airspace airport, to some 
of the tests because it has a comparable amount of traffi  c 
to TUL but a diff erent population of pilots and aircraft .

Th e ADS-B and Mode S messages report barometric 
and GPS altitude. However, both altitudes are reported 
with varying accuracy which is highly dependent on the 
aircraft ’s sensors. Figure 5 shows some of the inaccuracies 
observed from a sample fl ight at LAF. Th ere is an off set 
between barometric and GPS altitudes, however, the mag-
nitude of the off set is inconsistent. Th e errors are expected, 
as barometric altitude measures pressure diff erences and 

GPS (or geometric altitude) measures a distance. GPS will 
measure height with respect to either a geoid or ellipsoid 
Earth model, which can diff er by up to 100 m. Some, but 
not all GPS receivers will add a geoid correction to out-
put geometric height, creating discrepancies. Th e aviation 
industry uses barometric altitude as standard. Th erefore, 
in this work, we used the barometric altitude for our algo-
rithms and calculations. Th e observed data justifi es using 
barometric altitude, with the elevation at LAF is 606 ft , 
or 185 m, and the lowest barometric and GPS altitudes 
shown in Figure 5 being 183 m and 145 m respectively.

Because the accuracy of the reported altitude is not 
consistent, detecting a landing and/or takeoff  is highly de-
pendent on the off set between the airport elevation and 
the threshold we choose for the algorithm. Table 1 makes 
the dependency clearer by reporting the number of land-
ings and takeoff s detected during the month of December 
2020 at TUL, where elevation is 220 m, using diff erent 
thresholds. Table  2 reports the number of landings and 
takeoff s detected for one day segments, on December  1 
and December 10, 2020. Th ere is no preset threshold 
altitude that will result in minimizing the landings and 
takeoff s lost. To account for these changes, the algorithm 
iterates through an array of threshold altitudes (user-se-
lected or default) and adds the maximum landings and 
maximum takeoff s detected to calculate total operations. 
In the case of Table 1, with the 50 ft  threshold jump, the 
total operations would be calculated by adding 1,248 land-
ings and 2,245 takeoff s, resulting in 3,493 total operations.

Table 2 presents information on the number of land-
ings and takeoff s at TUL and LAF for two days in Decem-
ber of 2020 with varied parameters in the algorithm. As 
a result of changing the algorithm parameters, we make 
several observations.

1. Like in Table  1, we varied the crossing altitude at 
which a plane is considered to be landing or tak-
ing off . LAF reported more consistent results in that 
250 m, or about 65 m above the airport’s surface, al-
ways resulted in the maximum number of landings, 

Figure 5.  Th e two reported altitudes (barometric and GPS) both vary in their accuracy. In this case, the GPS altitude is 
lower than the barometric altitude throughout the fl ight, with the two altitudes occasionally converging
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Table 2. The same threshold altitude analysis for a one-day 
range (December 1, 2020, and December 10, 2020) reveals 

that the “optimum” threshold altitude is not constant, 
especially at TUL. The maximum takeoffs occurred by setting 

the altitude threshold at 300 m on first test day, but 350 m 
on the second test day. In the “optimum searching” row, we 
allowed the algorithm to search for altitudes that resulted 
in maximum landings and takeoffs by iterating the post-

processing algorithm in the 150 to 350 m altitude threshold 
range with 5 m intervals. The numbers reported in parenthesis 
use a 2.0 NM boundary box, whereas the rest of the numbers 

reported are for a 0.5 NM boundary box

December 1, 2020
TUL

Threshold 
(m) Landings Takeoffs Total 

Operations
150 0 (0) 0 (0) 0 (0)
200 59 (63) 51 (52) 110 (115)
250 69 (117) 115 (116) 184 (233)
300 50 (121) 118 (124) 168 (245)
350 48 (110) 112 (125) 160 (235)

Optimum 
searching

87 (123) 120 (127) 207 (250)

FAA-reported N/A N/A 313
LAF

Threshold 
(m) Landings Takeoffs Total 

Operations
150 176 (175) 168 (168) 344 (343)
200 230 (229) 227 (227) 457 (456)
250 230 (233) 231 (232) 461 (465)
300 229 (232) 230 (231) 459 (463)
350 222 (236) 222 (235) 444 (471)

Optimum 
searching

230 (236) 231 (235) 461 (471)

FAA-reported N/A N/A 536
December 10, 2020

TUL
Threshold 

(m)
Landings Takeoffs Total 

Operations
150 0 (0) 0 (0) 0 (0)
200 2 (2) 2 (2) 4 (4)
250 55 (61) 64 (70) 119 (131)
300 51 (109) 94 (101) 145 (210)
350 26 (116) 97 (108) 123 (224)

Optimum 
searching

72 (116) 98 (108) 170 (224)

FAA-reported N/A N/A 303
LAF

Threshold 
(m) Landings Takeoffs Total 

Operations
150 37 (37) 40 (40) 77 (77)
200 195 (197) 199 (199) 394 (396)
250 200 (204) 204 (205) 404 (409)
300 198 (206) 203 (207) 401 (413)
350 189 (213) 191 (214) 380 (427)

Optimum 
searching

200 (213) 203 (214) 403 (427)

FAA-reported N/A N/A 606

Table 1. The number of detected landings and takeoffs changes 
based on the selected threshold. The maximum landings and 

maximum takeoffs are not detected at the same threshold 
altitude. Note that the control tower at LAF does not operate 

overnight, but the algorithm continued to detect landings 
throughout the month

December 1, 2020–December 31, 2020
TUL

Threshold (m) Landings Takeoffs Total 
Operations

150 559 573 1132
200 1248 1715 2963
250 1192 2123 3315
300 1108 2245 3353
350 952 2059 3011

FAA-reported N/A N/A 5500
LAF

Threshold (m) Landings Takeoffs Total 
Operations

150 1741 1742 3483
200 2595 2638 5233
250 2641 2704 5350
300 2502 2572 5074
350 2261 2327 4588

FAA-reported N/A N/A 6766

takeoffs, and total operations. TUL is inconsistent 
and the same threshold may not maximize both 
landings and takeoffs. Additionally, the same thresh-
old did not maximize operations on the two days 
tested.

2. The “optimum searching” row has the algorithm it-
erating through the same range of threshold values 
(150–350 m) at 5 m intervals to identify the maxi-
mum operations we can possibly detect and com-
pare the difference to the FAA-reported totals.

3. Our algorithms seem to be performing better at LAF 
than TUL, when compared to the FAA-reported to-
tals. Additionally, the number of landings and take-
offs at TUL show large differences. While we do not 
expect the number of landings and takeoffs to be ex-
actly the same, since some operations call for over-
night stays, among other reasons, the large difference 
is a cause for concern. Our hypothesis for these in-
consistencies is that the boundary box offset distance 
from the runway ends is to blame, so we changed the 
offset from 0.5 Nautical Miles (NM) to 2.0 NM to 
obtain the numbers in the parentheses. While ADS-B 
is expected to transmit data at a frequency of 1 Hz 
(Tabassum & Semke, 2018), that is not always the 
case in reality. An aircraft at a high speed could fly 
through the 0.5 NM distance and cross below the alti-
tude where it would be detected without transmitting 
an updated signal, resulting in our algorithm missing 
the landing. Changing the offset made a bigger dif-
ference at TUL than LAF, which was expected due to 
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the diff erence in operations among the two airports, 
with TUL being frequented primarily by airline traf-
fi c, and LAF accommodating mostly training opera-
tions. Th e total number of operations increased, but 
perhaps more importantly, the landing and takeoff  
numbers became more consistent. Th e change in the 
off set comes at the tradeoff  of now potentially count-
ing more false positives in the case of LAF, where the 
number of operations detected with a high altitude 
threshold increased, suggesting that the algorithm 
was detecting missed approaches and go-arounds, an 
expected operation at a training airport. Th e bound-
ary box off set value should therefore be a function 
of the type of operations expected at the airport of 
interest, with faster traffi  c requiring a larger bound-
ary box, and smaller boundary boxes being more 
appropriate for slower operations such as those at a 
training airport. Increasing the boundary box off set 
at TUL also resulted in more consistent “optimum 
thresholds” between takeoff s and landings.

4. Time and method comparison

To establish the accuracy of the approach described com-
pared to other, more costly methods, we wanted to run 
our analysis for the same timeframe as the ones used in 
other work. However, data in other work is dated. Th e 
testing and evaluation process of Mott (2018), for exam-
ple, uses data in the period from September 12, 2016 to 
March 10, 2017. While some aircraft  owners and operators 
started equipping their fl eet with ADS-B out technology 
before the mandate deadline of January 1, 2020, ADS-B 
data was sparse that long before the mandate. During that 
same 180-day period, we counted just 2422 operations 
at LAF (1209 landings and 1213 takeoff s) using crowd-
sourced ADS-B data – Mott counted 51,577 using Mode S 
and Mode C signals (Mott, 2018). We are therefore not 
able to run analyses that compare our results to those of 
other novel methods until more recent work is published 
that makes use of newer data.

Instead, we ran an analysis to evaluate the “correctness” 
of automated ADS-B counts to the FAA ATADS informa-
tion over time, in one-month increments. Figure 6 shows 
the monthly operation counts at Purdue University Air-
port from January 2018 to May 2021. Th e two lines corre-
spond to the FAA ATADS counts and the counts detected 
and measured in crowd-sourced ADS-B data. Operations 
are cyclic, with more operations in the summer months 
and less in the winter. Th e FAA-reported counts are stable 
throughout the more than three years pictured – counts 
measured from ADS-B data show an increase over time, 
closing the gap between FAA and ADS-B numbers. Fig-
ure 7 makes the convergence clearer by reporting percept 
diff erence between FAA-reported numbers and ADS-B 
numbers and showing a steady decrease until the ADS-B 
mandate was in eff ect, converging to approximately 20% 
error. Th e outliers in both graphs in March, April, and 
May are a result of the COVID-19 pandemic. A lot of the 
traffi  c at LAF comes from student training, and since Pur-
due University terminated in-person classes on March 16, 
2020 until the end of the semester the operation counts 
were greatly aff ected.

Conclusions

In this paper, we presented a method for using crowd-
sourced ADS-B data near airports to report the number 
of landings and takeoff s. We developed an algorithm that 
takes user preferences to create a boundary box around 
the requested airport and count the total number of oper-
ations in the period that the user selects. Th is work can be 
used to report more accurate numbers to the FAA without 
the need to create additional infrastructure and maintain 
existing or new equipment. While using ADS-B data may 
not always result in accurate operation counts, depending 
on the location of the airport, the availability of data, and 
the type of operations (i.e. if not all aircraft  frequenting 

F igure 6. Th e gap between counts measured using crowd-
sourced ASD-B and those reported by the FAA at LAF 

decreased starting approximately one year before the ADS-B 
mandate of 2020. Th e outliers in the number of operations 

around April of 2020 are due to COVID-19 shutdowns 
aff ecting the aviation industry

Fi gure 7. Th e diff erence between ADS-B measured and FAA-
reported counts provides an insight into the proportion of the 
fl eet equipped with ADS-B out. We observe a steady decrease 
in the diff erence which stabilizes at about 20%. Th e outliers in 
April and May 2020 correspond to small changes in Figure 6 
but end up with a large absolute value due to the decrease in 

operations during the COVID-19 shutdowns
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the airport are ADS-B out compliant), using ADS-B data 
make new statistical methods possible. For example, while 
we have been basing the statistical models on the number 
of IFR operations or the number of aircraft based at the 
field, we can now use the ADS-B operations estimate as 
a starting point to build models that will in turn estimate 
the true total operations.

The biggest limitation to the method used is that we 
do not have a true count to compare to the ADS-B crowd-
sourcing method. For example, while the tower at LAF 
counts operations during the day, it is not clear if or how 
the night-time operations are reported. An evaluation of 
the ATADS airport operation counts has revealed some 
inconsistencies that affect the work, with numbers report-
ed being inflated. For example, some airports are adding 
over-flights to their itinerant count, not capturing true air-
port counts. Given the lack of transparency in operations 
counting and the inconsistencies, to ensure correctness, 
we need a period of visual observations, or flight data 
from a subset of aircraft in combination with the ADS-B 
data. Adding higher resolution to the OpenSky network, 
by having each airport feed data to the database through 
an antenna, would improve the reliability of counts.

The method presented has many advantages  – it is 
very autonomous from an end-user perspective and the 
user does not incur extra costs in terms of equipment or 
personnel required. Additionally, it is possible to include 
more information with the counts and group operations 
accordingly. For example, we can separate operations 
based on the type of operation or the flight’s transient/
local status.

Future work will focus on improving the approach and 
expanding its capabilities. To improve the current algo-
rithm, we can use visual observations at different airports 
so that we can tune our algorithm accordingly. Addition-
ally, we plan to use commercial data from FlightAware 
and FlightRadar24 to evaluate whether they perform bet-
ter given their more prevalent nature in the United States. 
Lastly, airports (particularly smaller airports) may benefit 
from an all-inclusive receiver which will feed data to the 
network while also counting operations at the airport.

Once more research is available in the post-2020 
ADS-B mandate era, we will have an opportunity to com-
pare the crowd-sourced ADS-B data approach to other 
methods, such as the one in Mott (2018), and compare 
the accuracy of results to evaluate whether more costly 
methods produce results that justify their cost.
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