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Abstract. With the widespread use of unmanned aerial vehicles (UAVs) in life, the real-time recognition of UAVs has be-
come an important issue. The authors of this paper mainly studied the application of the random forest (RF) algorithm in 
the outdoor real-time recognition of UAVs. Mel-Frequency Cepstral Coefficient (MFCC) features were extracted from sound 
signals firstly, and then the RF method was combined with weighted voting to obtain the improved random forest (IRF) meth-
od to identify UAV sounds and environmental sounds. An experimental analysis was conducted. The modeling time of the 
IRF method increased by 9.52% compared with the RF method, and the recognition rate of the IRF method decreased with 
the increase of the distance from the microphone; however, the recognition rate of the IRF method was always higher than 
that of the RF method, and the recognition rate of the IRF method for the mixed samples was always higher than 90%. When 
the distance was 10 m, the IRF method still had a recognition rate of 91.29%. The experimental results verify the effectiveness 
of the IRF method for the outdoor real-time recognition of UAVs and its practical application feasibility.
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Introduction

An unmanned aerial vehicle (UAV) is a small aircraft 
with low cost, which is manipulated by wireless devices 
and is highly flexible and simple to operate (Wang et al., 
2015). With the development of the aviation industry, 
UAVs have also received more and more attention, and 
more and more applications in the civil field (Hayat et al., 
2016), such as aerial mapping (Martin et  al., 2016) and 
agricultural monitoring (Torres-Sánchez et al., 2015), has 
resulted in a rapid increase in the number of UAV users. 
However, the current supervision of UAVs is not perfect. 
The arbitrary and illegal flying of UAVs have brought a 
series of safety problems to the society. With the popu-
larization of UAVs, the target detection, attitude control, 
and recognition detection of UAVs have been widely 
studied. Jackson et  al. (2020) conducted plant detection 
and mapping in Texas by UAVs at altitudes of 30, 60, and 
100 m. They found that low spatial resolution (100 m al-
titude flight, 12 cm pixel resolution) provided less noise 
and more generalization capability for image classification 
methods. Yamazaki et al. (2020) designed a UAV human 

search system combined with array microphones to de-
tect the human body and evaluated the accuracy of the 
method through experiments. Zha et al. (2017) designed 
a nonlinear controller incorporating a trajectory lineariza-
tion control (TLC) approach to control UAV attitude. They 
found through simulation tests that the method could well 
solve the common singularity problem in the current at-
titude control. Sapkota et al. (2016) proposed a method for 
online detection of small UAVs and used the AdaBoost-
based method for fast object detection. They found that 
the method enabled accurate detection and tracking of 
objects. Puzanau and Nefedov (2021) studied UAV detec-
tion in a background of wind noise and designed an algo-
rithm based on the Neyman-Pearson lemma. They found 
through experiments that the probability of correct UAV 
detection of the algorithm was 0.9 in a detection range 
of 200–300 m. Bao et al. (2021) established a cross-scale 
feature aggregation centric network to identify UAV and 
used a Kalman filter to track the UAV. The experiment 
found that the method could achieve high accuracy at a 
lower computational cost. Matczak and Mazurek (2021) 
investigated background estimation algorithms in UAV 
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detection. They compared several background estimation 
algorithms, performed a Monte Carlo study, and found 
that the Mixture of Gaussian version 2 (MOG2) algorithm 
had advantages in UAV detection. Iannace et  al. (2020) 
studied the indoor detection of UAVs. They established 
a model based on logistic regression to automatically 
detect UAVs and obtained an accuracy of 0.994 in the 
experiment. At present, the commonly used techniques 
for identifying UAVs include radar, laser, infrared, etc. 
Since UAVs produce large and easy-to-capture noise dur-
ing flight, this paper studied the outdoor real-time iden-
tification of UAVs with a random forest (RF) algorithm 
based on sound signals. The extracted MFCC features 
were used as the input of the improved random forest 
(IRF) algorithm to identify UAV sounds and environmen-
tal sounds, and experiments were performed on the data 
set. This work aims to find a more efficient identification 
method for effective identification of illegally flying UAVs. 
This paper makes some contributions to the protection of 
public safety and personal privacy.

1. UAV outdoor real-time identification method

1.1. Sound signal feature extraction

The application fields of UAV can be divided into military 
and civilian. In military use, UAVs can excel in low-altitude 
reconnaissance and surveillance tasks (Yao et  al., 2015) 
with their advantages of high concealment and survivabil-
ity, and they can also perform some simple combat tasks 
after modification. In civilian use, UAVs can be used for 
disaster assessment (Al-Rawabdeh et al., 2016), environ-
mental monitoring (Trasviña-Moreno et  al., 2017; Zhou 
et al., 2015), etc. However, due to the low entry threshold 
and lack of effective control, UAVs also bring many safety 
problems (Birnbaum et al., 2016): (1) due to improper op-
eration, poor signal and other reasons, UAV failure and 
fall can easily hurt people and damage objects; (2) the 
flight of UAVs may interfere with the flight of civil air-
craft; (3) UAVs are difficult to be detected and intercepted, 
so they may be used by terrorists to threaten public safety 
(Lopes-Esteves et  al., 2018). Therefore, the identification 
and detection of UAVs have become a difficult problem.

The sound of UAVs is generated by the friction between 
the rotor and the atmosphere, which is very different from 
the ambient sound. Therefore, the two sound signals can 
be recognized by the dichotomous classification method 
to achieve the purpose of real-time recognition of UAVs. 
Before recognition, the features of the sound signal need 
to be extracted first to reduce the signal dimension. The 
commonly used feature extraction methods are as follows.

1. Linear prediction coefficient (LPC): it is one of the ear-
liest applied methods for sound signal feature extrac-
tion and is mainly used for speech signal processing.

2. Linear predictive cepstrum coefficient (LPCC) 
(Pawar & Kokate, 2021): it analyzes signals to obtain 
cepstrum, which has wide applications in speech 
recognition, and it has a high recognition rate, but 
requires great computational effort.

3. Mel-frequency Cepstrum Coefficient (MFCC) (Zeng 
et al., 2015): it is a feature extraction method based 
on the auditory characteristics of the human ear, 
which converts linear frequencies into Mel frequen-
cies, and it has been widely used because of good 
discriminative performance.

In this paper, MPCC was used for feature extraction of 
sound signals. Using the same microphone, UAV sounds 
and environmental sounds are captured and converted 
to 5120 Hz samples in a uniform mat format. The frame 
and window lengths are set as 256 to extract the MFCC 
features of the signals. First, to improve the energy in the 
high-frequency region, a signal is pre-emphasized by first-
order high-pass filtering. The first-order high-pass filtering 
is defined as follows. For a time-domain signal x(t), a is 
set as the filtering coefficient, and the formula for its pre-
emphasized output signal can be written as:

( ) ( ) ( )1 , 0.9 1.0y t x t ax t a= − − ≤ ≤ . (1)

The signal is then windowed using the Hamming 
window, and the calculation equation of the Hamming 
window can be written as:
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1
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,  (2)

where N refers to the width of the window function, i.e., 
the frame, 256 or 512 usually.

After the above processing, the signal is then subjected 
to fast Fourier transform (FFT) to obtain the distribution 
of frequency components of the signal. The formula of 
FFT for the signal is:

( ) ( ) j tF f t e dt
∞

− w

−∞

w = ∫ , (3)

where w refers to frequency and t refers to time.
After FFT, the spectrum of every frame of the signal 

is written as:

( ) ( ) ( )R f FFT y t w n =   .  (4)

Then, through the Meier filter, the signal is converted 
from the frequency domain to the Mel domain. The fre-
quency distribution information under the Mel scale is 
written as:
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The signal is processed using a set of triangular filters, 
and the frequency response of every filter is written as:
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where ( )melf m  refers to the center frequency of the m-th 
triangular filter under the Mel scale. Then, the logarithmic 
energy of every filter is calculated:
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Finally, the discrete cosine transform is used to obtain 
the cepstrum coefficient of p(m):
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where Inum refers to the order of the MFCC feature, 2–13 
usually.

In the final extracted MFCC features, in addition to 
the cepstral coefficient calculated by the above equation, 
the dynamic features need to be extracted to enable a bet-
ter representation of the sound signal, i.e., to find the dif-
ference of the data frame:

( ) ( ) ( )1 1
3

c t c t
d t

+ − −
= .  (9)

The final obtained MFCC features include 12 dimensions 
of cepstrum coefficients and first-order and second-order 
differences of cepstrum coefficients, totally 36 dimensions.

1.2. Random forest algorithm

The RF algorithm is a combinatorial classifier (Belgiu & 
Drăguţ, 2016). It uses a classification and regression tree 
(CART) as a meta-classifier, combines a certain number 
of CARTs by the Bagging method, aggregates the clas-
sification results of CARTs (Biau & Scornet, 2015), and 
decides the optimal classification result through a voting 
mechanism. The basic concepts of the RF algorithm in-
clude CART and the Bagging method.

(1) CART: CART takes Gini index as the splitting cri-
terion, and its calculation formula is:

( ) ( ) 2

1
1 |

k

j
GINI t p j t

=

 = −  ∑ , (10)

where k refers to types of classes and p(j | t) is the probabil-
ity that class j is at node t. CART calculates the Gini index 
of every feature and finds out the feature with the minimal 
Gini index as the splitting feature to divide samples.

(2) The Bagging method: the Bagging method is an 
integrated feature for processing training sets. For a data 
set containing n samples, n’ data are independently and 
randomly selected to generate multiple independent, au-
tonomous training data sets. A sub-classifier is obtained 
after training with one training set.

The specific steps of the RF algorithm are as follows.
1. In the training sample set, k bootstrapping sample 

sets are generated by the Bagging method.
2. Based on the sample set, k classification trees are 

generated, and node splitting is performed accord-
ing to the CART method without pruning the trees.

3. Multiple CARTs are built to predict unknown sam-

ples, and the predicted results are determined ac-
cording to the simple voting method.

As an integrated learning algorithm, the RF algorithm 
has better classification performance and faster training 
compared with a single classifier and has been very widely 
used in image recognition (Hu et al., 2017), data predic-
tion (Koreen & Murray, 2015), etc. However, the voting 
mechanism in the algorithm assigns the same weight 
to every CART, and it is impossible to separate CARTs 
with high and low accuracy, which affects the final clas-
sification result. In this paper, an IRF algorithm was de-
signed for the above drawback based on the weighted 
voting method. Suppose that there is a test sample set X, 
a trained CART set T, and a classification result set C. 
The out-of-bag (OOB) data of decision tree t is denoted 
as Ot. Samples in Ot are classified by t. The classification 
results are compared with the actual classification, and the 
number of samples that are correctly classified is recorded 
and denoted as Otr. Then, the classification accuracy of 
decision tree t for Ot is written as:

tr
t

t

O
CR

O
= .  (11)

The larger the value of CRt is, the higher the accuracy 
of decision tree t is. CRt is taken as the weight of decision 
tree t. In the final vote, the total number of votes for class c 
is recorded as Sc, and its calculation formula is written as:

( )( ),
1

T

c c x t
t

S T x CR
=

=∑ .  (12)

When sample x belongs to class c, ( ), 1c xT x = , other-
wise ( ), 0c xT x = . Then, the class with the highest number 
of votes is used as the final classification result of sample x:

( )argmaxx cC S= .  (13)

After the MFCC features are extracted, the UAV sound 
samples are marked as positive samples and denoted as 1, 
and the ambient sound samples are marked as negative 
samples and denoted as 0. Then, different samples are 
classified by the IRF algorithm to recognize UAVs.

2. Experimental analysis

Experiments were conducted in a MATLAB environment. 
Python 3.5 was used for programming. Since there might 
be some differences in the sound of different UAVs, to 
ensure the diversity of samples, three types of UAVs were 
used, namely, DJI Mavic 3, DJI Air 2S and DJI Mini  2. 
Different sounds were collected when the microphone 
was 1 m, 2 m, 5 m away. The distance was taken as the 
variable to understand the effect of microphone distance 
on the recognition performance. The acquisition device 
was the AVLE AW-818 microphone. The signal was am-
plified by an amplifier and then acquired using an Agilent 
DSO9404A oscilloscope. The extracted UAV sounds and 
ambient sounds were composed into experimental sam-
ples, and then feature extraction was performed. Every 
sample was extracted with 36-dimensional features as 
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the input of the IRF algorithm. A total of 12,380 positive 
samples and 8,940 negative samples were obtained, 60% of 
which were used for the training of the IRF algorithm and 
40% for experimental testing.

First, the MFCC features of the two kinds of samples 
were compared. The results of the feature comparison be-
tween the UAV and ambient sounds are shown in Figure 1.

It was seen from Figure 1 that there were obvious 
differences between the MFCC features extracted from 
UAV sounds and ambient sounds. In general, the ampli-
tude of ambient sounds was larger, while the amplitude 
of UAV sounds was relatively smaller; the two kinds of 
samples were also not consistent in different dimensions. 
Therefore, the two sounds can be well distinguished by 
using MFCC features.

Computational complexity generally includes time 
complexity and space complexity. With the develop-
ment of hardware technology, the limitation of com-
puter storage capacity has become less influential to al-
gorithms, so the time complexity of algorithms is more 
considered when analyzing the computational complex-
ity. In the practical experimental process, to measure 
time complexity conveniently, it is usually represented by 
the time consumed by executing algorithms on the same 
machine. A comparison of the modeling time between RF 
and IRF algorithms is shown in Figure 2.

It was seen from Figure 2 that the modeling time of the 
IRF algorithm was 9.52% longer than the RF algorithm 
(0.23 s vs. 0.21 s). The reason for the above result was that 
the IRF algorithm optimized the voting mechanism and 
assigned different weights to different classifiers, which led 
to an increase in modeling time, but the increase was not 
much and did not affect the efficiency of recognition too 
much.

Taking the distance from microphones as the variable, 
the recognition rates of RF and IRF algorithms for UAV 
sounds at different distances were compared, and the re-
sults are shown in Figure 3.

It was seen from Figure 3 that with the increase of the 
distance from the microphone, the recognition rate of 
both RF and IRF algorithms gradually decreased. When 
the distance was 1 m, the recognition rate of the IRF 
algorithm was 7.66% higher than that of the RF algorithm 
(97.87% vs. 90.21 %). When the distance was 10 m, the 
recognition rate of the RF algorithm was 75.21%, which 
was 15% lower than the rate when the distance was 1 m, 
and the recognition rate of the IRF algorithm was 90.28%, 
which was 7.59% lower than the rate when the distance 
was 1 m, but was 15.07% higher than the recognition rate 
of the RF algorithm at the same distance. Moreover, the 
recognition rate of the IRF algorithm was above 90%.

The recognition rates of RF and IRF algorithms for am-
bient sounds at different distances are shown in Figure 4.
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It was seen from Figure 4 that similar to the recogni-
tion of the UAV sound, the recognition rate of the ambient 
sound decreased gradually with the increase of distance 
from the microphone, The recognition rate of the RF 
algorithm was above 80% and that of the IRF algorithm 
was above 90%. When the distance from the microphone 
was 10 m, the recognition rate of the IRF algorithm was 
10.92% higher than that of the IRF algorithm (93.28% vs. 
82.36%). The results showed that the recognition perfor-
mance of the IRF algorithm was better than that of the 
RF algorithm.

Finally, all samples were mixed for recognition. The 
recognition rates of the two algorithms at different dis-
tances are shown in Table 1.

It was seen from Table 1 that the recognition rate of 
the two algorithms decreased gradually as the distance 
from the microphone increased; the algorithms had the 
highest recognition rates, 94.05% and 97.61% when the 
distance was 1 m, and the recognition rates were 82.29% 
and 91.29% when the distance was 10 m. In general, the 
recognition rate of the IRF algorithm was always higher 
than that of the RF algorithm, which verified that the 
improved IRF algorithm was reliable and could recognize 
UAVs effectively.

3. Discussion

With the progress of computer technology and the devel-
opment of intelligent algorithms, more and more algo-
rithms have been well applied in various fields of people’s 
lives. Ran et al. (2021) developed a novel K-means clus-
tering algorithm based on noise algorithm for the urban 
congestion problem to capture urban hotspots. They 
found that the method could accurately obtain cluster-
ing results and effectively capture urban hotspots through 
experiments on five taxi GPS datasets from Aracaju 
(Brazil), San Francisco (USA), Rome (Italy), Chongqing 
(China), and Beijing (China). Cui et al. (2021) proposed 
a new fault diagnosis method based on variational modal 
decomposition (VMD) and maximum correlation kurtosis 
deconvolution (MCKD) to solve the problem of weak 
fault signals in rolling element due to long transmission 
paths and found through simulation experiments that the 
method could effectively and accurately diagnose rolling 
element faults in rolling bearings. Wu et al. (2020) pro-
posed a novel self-paced dynamic infinite mixture model 

to infer the dynamics of electroencephalogram fatigue sig-
nals. They found through experiments that the proposed 
model showed better performance in automatically iden-
tifying the brain workload of pilots. This paper focuses 
on the application of RF algorithm in UAV identification.

The experimental results of this paper showed that 
the MFCC features could help distinguish between UAV 
sounds and ambient sounds, indicating that the MFCC 
features were reliable. The comparison between the RF 
algorithm and the IRF algorithm found that the modeling 
time of the IRF algorithm only increased by 9.52%, but the 
optimization did not significantly increase the calculated 
amount. The recognition results of UAVs suggested that 
the recognition rate of the algorithm for both UAV sounds 
and ambient sounds decreased gradually as the distance 
from the microphone increased; but it was found from the 
comparison in Table 1 that the IRF algorithm had a higher 
recognition rate than the traditional RF algorithm, and 
its recognition rate was 97.61% when the distance from 
the microphone was 1 m, which was 3.56% higher than 
that of the RF algorithm. The above results verified the 
effectiveness of the IRF algorithm.

Despite some achievements in the study of the out-
door real-time recognition of UAVs in this paper, there 
are some shortcomings. In the future work, the following 
needs to be carried out:

1) studying different UAV models to understand the 
applicability of the IRF algorithm;

2) studying the real-time recognition of multiple UAVs 
to improve the existing algorithm;

3) expanding the recognition distance to study the 
maximum effective detection distance of the 
algorithm for UAVs.

Conclusions

This paper studied the outdoor real-time recognition 
method of UAVs. Based on sound signals, the RF al-
gorithm was improved. The IRF algorithm was used to 
capture sound signals for experimental analysis. The 
results demonstrated that the modeling time of the IRF 
algorithm was slightly longer than the RF algorithm, and 
the recognition rate of both algorithms decreased with 
the increase of the distance from the microphone, but the 
recognition rate of the IRF algorithm was always better 
than the RF algorithm. In the recognition of all samples, 

Table 1. Comparison of recognition rates between the two algorithms (n = 8528)

Distance from the 
microphone, m

The RF algorithm The IRF algorithm

Number of samples 
correctly recognized Recognition rate, % Number of samples 

correctly recognized Recognition rate, %

1 8021 94.05 8324 97.61
2 7894 92.57 8189 96.02
5 7532 88.32 7888 92.50

10 7018 82.29 7785 91.29
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the recognition rate of the IRF algorithm was above 90%, 
up to 97.61%, which verified the effectiveness of the IRF 
algorithm in the outdoor real-time recognition of UAVs. 
The IRF algorithm can be further promoted and applied 
in practice.
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