
Copyright © 2022 The Author(s). Published by Vilnius Gediminas Technical University

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

THE EFFECT OF MOTION FORMATION ON COOPERATIVE NAVIGATION

Mohammad SABERI TAVAKKOLI  , Ghasem KAHE  *, Fatemeh SADEGHIKIA  

Aerospace Research Institute, Tehran, Iran

Received 5 April 2021; accepted 3 November 2021

Abstract. The effect of formation movement on the performance of cooperative navigation is investigated in this pa-
per. First, the inertial navigation system of each agent with a certain accuracy is modeled and simulated. Initial results 
showed that the navigation error of each agent increased individually over time, and this problem is more severe for 
agents equipped with a weaker system. Cooperative navigation is implemented for the agents to resolve this problem. It 
is shown that the total navigation errors are improved by observing and participating the relative distance between the 
agents. Various simulations and experimental tests using two real agents supported this assertation. The performance of 
cooperative navigation can be improved further through appropriate formation. Proper formations are investigated and 
evaluated through simulations. The collective covariance matrix is employed to form an objective function using an ex-
tended Kalman filter (EKF). This function has been minimized using Newton’s method, which could be the solution for the 
formation. The simulation results show that better accuracy can be achieved by applying the optimal formation trajectory.
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Introduction

Navigation systems are essential vehicle subsystems, such 
as Unmanned Aerial Vehicle (AUVs), land mobile robots, 
aircrafts, UAVs, satellites, or spacecrafts. Different naviga-
tion systems are used according to the requirements of 
each vehicle, mission, and the environment. Inertial navi-
gation systems, radio navigation systems, and other types 
of systems have grown significantly throughout recent 
years. The navigation systems using MEMS1 technology 
have been prevalent because they are relatively accurate, 
lightweight, and inexpensive.

There are several ways to increase the accuracy of navi-
gation systems. Generally, either an expensive equipment 
with highly accurate sensors is used (such as INS2 with 
high-precision accelerometer and gyros or celestial navi-
gation systems), or an integration of several navigation 
systems is utilized as auxiliary or alternative navigation 
systems (such as INS/GPS integration or using two INSs 
at the same time).

Sometimes using aided navigation systems will increase 
the cost. Therefore, to reduce the cost, inter-agent naviga-

1 Micro-ElectroMechanical System
2 Inertial Navigation System

tion is has been used in many types of research, which have 
been related to ground robots, naval and submarine vehi-
cles, aerial vehicles such as drones, and space vehicles such 
as satellites and spacecrafts. They all have in common some 
sensors that measure relative variables such as relative dis-
tance, relative orientation, relative position, and relative ve-
locity. For example, in some of the previous studeis, relative 
navigation is considered between two satellites, in one of 
them, UHF waves, and in the other, X-rays are emitted in 
the galaxy. These waves have been used to obtain relative 
navigation, which eventually resulted in an accuracy of 0.5 
m in relative position and 1 cm/s in relative velocity (Mon-
tenbruck et  al., 2002; Sheikh et  al., 2007; Martin, 2011). 
Cutler et al. (2013) refer to the indoor navigation of the 
quadrotor, which uses an integration with IR3 data due to 
the low inertial navigation accuracy of these drones. The 
drone can measure both range and bearing from the mark-
ers in the environment. Accurate relative navigation is also 
performed via laser equipment (Lee et  al., 2018). In the 
relative navigation algorithm, the estimations are through 
EKF and Unscented Kalman Filter (UKF), and this paper 
also compares the two filters. In the simulations, some-
times EKF gives inaccurate answers or leads to divergence, 

3 Infrared
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while UKF doesn’t have these problems. In a PhD thesis 
from Nanyang Technological University, the formation of 
drones in GPS-denied is discussed (Guo, 2018). This thesis 
states that UWB radio frequency technology can compen-
sate for the lack of access to GPS. The first step in this 
thesis is to localize UAVs based on UWB. It is done by 
measuring the distance between drones and radio trans-
mitters fixed in the operating space. In the next step, using 
a landmark makes it possible for each drone to estimate 
its relative distance from that marker to correct its global 
position. Another challenge raised in this thesis is obtain-
ing a relative position among quadcopters for which there 
is no specific commercial equipment, and the author must 
obtain the relative position of the agents using the two 
afore-mentioned steps. Rutkowski et al. (2016) present a 
path planning method to reduce the uncertainty of two 
autonomous cars moving from a known position to the 
desired location.

In this case, an odometer is mounted on each car to 
detect changes in the position and heading. The cars also 
have a sensor that can measure the relative distance be-
tween them. Cooperative navigation is also used to reduce 
road and city traffic. Summerfield et al. (2020) develope a 
cooperative centralized routing algorithm that minimizes 
the whole network congestion. In this algorithm, a heu-
ristic cooperative routing algorithm is taken, which mini-
mizes the network congestion. In another study, Mokhtar-
zadeh and Gebre-Egziabher (2016) improve the navigation 
accuracy by sharing navigation data in a GPS-denied en-
vironment. This article studies UAVs, which have AHRS4 
and Airspeed DR5 sensors, and finally uses flight test data 
from a reference to prove its work.

Cooperative navigation also works in human-robot 
environments. A robot needs to predict human trajecto-
ries and plan its own trajectory correspondingly in the 
same shared space to meet comparable human efficiency. 
Khambhaita and Alami (2019) present a navigation plan-
ner that can plan such cooperative trajectories, while si-
multaneously enforces the robot’s kinematic constraints 
and avoid other non-human dynamic obstacles. Using 
robust social constraints of projected time to a possi-
ble future collision, compatibility of human-robot mo-
tion direction, and proxemics, the planner can replicate 
human-like navigation behavior not only in open spaces 
but also in confined areas. In another article, Cooperative 
Vision-and-Dialog Navigation is presented (Thomason 
et al., 2020). In this study, a dataset of over 2k embodied 
human-human dialogs were situated in simulated photo-
realistic home environments. It is a kind of cooperative 
navigation that needs a human voice. The Navigator asks 
his partner, the Oracle, who has privileged access to the 
best next steps the Navigator should take according to the 
shortest path planner. Finding a safe path to navigate in 
the environments crowded with humans is a challenge.

4 Attitude and Heading Reference Systems
5 Dead-Reckoning

In a series of articles published in three consecutive 
years, the navigation accuracy of a quadrotor called “boy” 
in the urban environment is investigated (Vetrella et al., 
2016, 2017; Causa et al., 2018). Due to the existence of 
tall buildings, this quadrotor could not access GNSS sat-
ellites. Therefore, some other quadcopters called “Father”, 
which fly at high altitudes and have free access to GPS 
satellites, are used to increase the accuracy of the naviga-
tion of the son. The communication between the father/
fathers and the son is used to improve the son’s navi-
gation performance since the father/fathers has sensors 
that measure the relative information between himself 
and the son and provides it to the son after processing, 
so he has the ability to correct his position. In the study 
conducted by Causa et  al. (2018) the relative measure-
ments and information sharing between the father and 
son are the primary fundations of this integration algo-
rithm. Different filtering architectures in relative meas-
urements focusing on measurement equations and rela-
tive covariance matrices are examined in this paper. The 
Dilution of Precision (DOP) concept is used to predict 
the accuracy of a boy’s position due to the availability of 
GNSS and relative measurements, which uses this crite-
rion to achieve an optimal geometry to improve his navi-
gation performance. Experimental data has shown how 
proper geometry can help visual cooperation in naviga-
tion by achieving meter accuracy in long-time flights. In 
another article, a similar issue with references (Vetrella 
et al., 2016, 2017; Causa et al., 2018) is dealt with. How-
ever, instead of using auxiliary quadrotor(s), a ground 
robot is used (Sivaneri & Gross, 2017). This article deals 
with cooperative navigation between UAVs and UGV6s 
that operate in GPS-challenged environments; therefore, 
the focus is on designing the optimal UGV motion to 
work best to assist UAV navigation. The UGV location 
is chosen to provide the best navigation assistance to the 
UAV. Using these methods in the natural environment 
has been shown to improve the error from 1 m to 10 cm. 
In another article, the same issue is addressed again with 
references (Vetrella et al., 2016, 2017; Causa et al., 2018), 
but this time the GPS-challenge has arisen due to the 
flight of a quadrotor in the valley (Cledat & Cucci, 2017). 
In this article, two UAVs are considered; one is flying 
over a valley with access to GNSS signals and can see the 
other drone flying in the middle of the valley and does 
not have access to GNSS signals. The upper drone can 
track and control the drone in the valley via a camera, 
ultimately increasing its positioning accuracy.

For many years, one of the topics has been formation 
flying and its effect on relative navigation accuracy, called 
cooperative navigation system or CNS. This type of navi-
gation contributes to both individual and collective agent 
navigation. In cooperative navigation, collective estimation 
is always better than individual estimation (Sanderson, 
1998). Sanderson (1998) discusses cooperative navigation 
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for robots, which ultimately leads to a better estimate of 
collective navigation by increasing the relative navigation 
accuracy. In this paper, the relative distance measurement 
is considered as the Kalman filter’s input to have a bet-
ter collective position estimation. It is also noted that as 
the number of robots increases, the accuracy of collec-
tive estimation will increase too. Each robot uses only the 
relative distance information between itself and other ro-
bots, and the relative distance information between other 
robots does not affect it. The effect of CNS is in a way 
that if the accuracy of one robot is high, it will increase 
the accuracy of the position estimation in other robots as 
well. In a research done by Fosbury and Crassidis (2008), 
complete equations of motion in aerial navigation for for-
mation flying with a leader and its follower perspective 
are presented. In this paper, EKF is used to estimate the 
relative position between two vehicles. The variable states 
of the leader are assumed to be known, while the relative 
variable states are estimated by measuring the line of sight 
(LOS) between the two vehicles and the acceleration and 
angular velocity of the leader.

Optimal control theory has also been used to mini-
mize a criterion according to the type of sensors. This 
criterion prevents too many maneuvers for the follower. 
During the cooperative flight, the UAV’s swarm can use 
the received position and ranging information of the ad-
jacent UAV to calculate the position and fuse it with its 
sensor position information. The final positioning accu-
racy depends not only on the capability of the ranging 
sensor but also on the position accuracy and formation 
of the adjacent UAV (Chen et al., 2020). An article used 
integrated video navigation and GPS/VISNAV (Chen 
et al., 2010). The integration is used to achieve high accu-
racy in relative navigation and determine the formation 
flying of the closest spacecraft. In the proposed integra-
tion, the federated Kalman filter (FK) is used. In another 
article by the same authors, the GPS/VISNAV integration 
is used again, but this time to improve the accuracy and 
performance of fault tolerance in relative navigation and 
with the purpose of determining the position for the for-
mation of very close satellites (Wang, 2011; Wang et al., 
2011a, 2011b).

Sometimes, agents have different observations of the 
same phenomenon, leading to a more accurate observa-
tion by sharing their observations. For example, Hong and 
Simon (2017) found that several agents have different esti-
mates of a target space that try to estimate the target better 
by sharing their estimates. In this research, which has a 
leader-follow formation flight strategy, the Hill-Clohessy-
Wiltshire (HCW) equations are used for relative naviga-
tion. Vetrella et al. (2018) considered cooperative naviga-
tion to estimate the main agent’s attitude with the help of 
other agents reliably and accurately. It is done through 
tight integration in the extended Kalman filter so that the 
data of the GNSS receivers and the visual system be inte-
grated with the data of the inertial sensors and magnetom-
eter. The main idea is to determine the attitude of the main 

agent using the difference between the data of the GNSS 
receivers, and the visual system of the other agents instead 
of using multiple GNSS antennas. In another article, us-
ing cooperative navigation reduced the growth of dead 
reckoning navigation error in ground robots (Roumeliotis 
& Bekey, 2002). The dead-reckoning navigation used in 
this article is achieved by rotating the wheels. Robots only 
move in the longitudinal body axis and can have a side 
angle that makes the equations of motion a little easier. 
Robots are assumed to use the relative distance and rela-
tive angle to reduce navigation error. This relative data is 
used when two robots are at a minimum detectable dis-
tance from each other. This paper proves that the growth of 
dead reckoning navigation error is reduced when coopera-
tive navigation is used. Faghihinia et al. (2021) investigated 
the propagation of uncertainty in a cooperative navigation 
algorithm (CNA) for a group of flying robots (FRs). For 
further studies, a relaxed analytical performance index 
through a closed-form solution is derived. Moreover, the 
effects of the sensors’ noise covariance and the number of 
FRs on the growth rate of the position error covariance 
are investigated. Analytically, it is shown that the covari-
ance of position error in the vehicles equipped with the 
Inertial Measurement Unit (IMU) is proportional to the 
cube of time.

Cooperative navigation also works in unknown plac-
es. Jin et al. (2019) addressed a multi-agent cooperative 
navigation problem that multiple agents work together 
in an unknown environment to reach different targets 
without collision and minimize the maximum naviga-
tion time they need. To this end, they have modeled the 
navigation policy as a combination of a dynamic target 
selection policy and a collision avoidance policy. Since 
these two policies are coupled, an interlaced deep rein-
forcement learning method is proposed to learn them 
simultaneously.

A review of previous research shows that most ref-
erences face some common challenges, including the 
growth error in navigation systems. To overcome these 
challenges integrated navigation and sometimes rela-
tive measurements are used. Another challenge that has 
been addressed in some cases is the GNSS-challenge. This 
challenge results from the fact that most robots use GNSS 
receivers, especially GPS, which have many problems. 
Therefore, the idea implemented in this article is to elimi-
nate satellite navigation aids and increase the accuracy of 
cooperative navigation through the optimal formation of 
agents.

1. Description of the problem

As in previous studies, authors seek to reduce navigation 
error and address the challenges posed by using coopera-
tive navigation. The main purpose of this research work  
is to achieve the best inter-agent formation so that the co-
operative navigation error is minimized without the use 
of aided navigation equipment such as GPS. This article 
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claims that it is possible to experience up to a 40% in-
crease in the accuracy of cooperative navigation in a group 
of agents by using the optimal formation. This formation 
can be in a group flight at a constant altitude from one 
position to another, in which each agent, in addition to 
navigating itself, can also help improve the navigation 
performance of other agents. The relative data that will 
be measured between the agents is the relative distance.

Another point to be made is that to achieve good 
relative data, at least one agent must have more accurate 
navigation. This increase in accuracy is either due to more 
accurate equipment or several landmarks.

2. Equations of motion

As mentioned, agents have freedom of movement in a 
two-dimensional (2D) space. It is a three-degree of free-
dom (3DOF) of movement, which includes moving in 
the lateral and longitudinal directions and changing the 
heading angle. Five variable states are considered for such 
dynamics including: two displacements, two linear veloci-
ties, and a heading angle j.

T
x yX v v x y = j 



. (1)

Moreover, the state-space equations for the variables 
are defined as the following equation:

T
x y y x x yX a v a v v v = w −w +w 



 , (2)

where w is angular velocity about the axis perpendicular 
to the x – y plane; and ax and ay are acceleration in the x 
and y directions. Since the agents use an inertial naviga-
tion system instead of accelerations and angular velocity, 
the output of the accelerometers and gyro are substituted 
in the above equations.

3. Extended Kalman Filter

Assuming that a discrete EKF is used to integrate the data, 
the following equations can be assumed:

( )1,k k k kx f x u w−= + ; (3)

( )k k kz h x= + υ , (4)

where wk and kυ  are process noise and measurement 
noise, respectively, which are assumed to be the Gauss-
ian noise with zero mean and covariances Qk and Rk. 
Furtheremore uk is regarded as the control of the system. 
f is a function that calculates the estimation of system 
states based on the previous estimation, and similarly h 
is a function that estimates the measurement based on 
the previous measurement. These two functions cannot 
directly have a covariance matrix and must use partial de-
rivatives (or Jacobin) at any step times. According to the 
assumptions, the EKF algorithm will be as the equations 
are shown in Table 1 (Noureldin et al., 2013):

Table 1. EKF algorithm

Predict
(5)( )| 1 1| 1ˆ ,ˆk k k k kx f x u− − −=

Predicted State 
Estimate

(6)
| 1 1| 1

T T
k k k k k k k k kP F P F G Q G− − −= +Predicted Covariance 

Estimate

Update
(7)( )| 1ˆk k k ky z h x −= −

Innovation or 
Measurement Residual

(8)
| 1

T
k k k k k kS H P H R−=Innovation (or 

Residual) Covariance

(9)1
| 1

T
k k k k kK P H S−−=Near-Optimal Kalman 

Gain

(10)
| | 1ˆ ˆk k k k k kx x K y−= + 

Updated State Estimate

(11)( )| | 1k k k k k kP I K H P −= −Updated Covariance 
Estimate

where Qk is system noise covariance,Rk measurement 
noise covariance and Fk, Gk and Hk are obtained as fol-
lows:

| 1ˆ
   ,      ,   

k k

k k k k k
x

hF I A dt G B dt H
x

−

∂
= + = =

∂
, (12)

where I is an identity matrix in the same dimension of the 
problem, and Ak and Bk are Jacobins of state-space equa-
tions with respect to state variables and input variables 
which were obtained as the following equations:

1| 1 1| 1ˆ ,ˆ,
   ,   

k k k k k k

k k
x u x u

f fA B
x u

− − − −

∂ ∂
= =
∂ ∂

. (13)

If x is the state vector, zrel is the observation of the rela-
tive state vector between two or more agents, xnav is the 
navigation system state vector, and the integration of rela-
tive and absolute navigation data is desirable to increase 
the accuracy of integrated navigation, based on Equations 
(3) to (13), the following equations will be derived:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )( )

| | 1 | 1 | 1

| 1

ˆ

.

ˆ

ˆ

k

k

k

T T
nav k k k k k k k k k kk k

S

K

relrel k k k

y

x x P H H P H R

z h x

− − −

−


 
 
 
  


+


 
 
 =  
 
  
 

−













 







  

(14)
In Eq. (14) ( )( )| 1ˆrel k kh x −  is a function used to predict 

the relative state vector. Therefore, it is observed that the 
navigation data is related to the relative state vector via 
this function.
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The only observation is the relative distance. Since 
relative distance is not the state variable of the system, its 
relations must be derived as follows:

( )( ) ( ) ( )2 2
| 1ˆrel i j i jk kh x x x y y− = − + − . (15)

Therefore, the observation matrix according to Equa-
tion (12) will be formed as follows:

12 12 12 12

13 1313 13

21 2121 21

232323 23

31 3131 31

32 32

0 000 0 0 0
0 0 0

0 000 0 0 00 0 0 0
0 0 0 0000 000H        0
0 0 0

00 0 0 0 0 0 0
0 0 0

0 00 00 000 0 0 0
0 0 0 0 0 0 0 0

0
'

x y x y

x yx y

x yx yC
'

y

' '

NS
xx y

' '

'' '

' '' '

''

x'
yx y

x y

'

' ''

' '

h h h h

h hh h

h hh h
hhh h

h hh h
h h

− −

− −

= − −
−−

− −
− − 32 32x

' '
yh h

 
 
 
 
 
 
 
 
 
 
 
  

,

(16)
where:

( ) ( )

( ) ( )

2 2

2 2

,   

.

xij

i j i j

yij

i j i j

'

'

h xij

x x y y

yij

x
h

x y y

∆
=

− + −

∆
=

− + −
 (17)

4. Cooperative navigation equation

This paper assumes that the agents use a micro-electrome-
chanical system (MEMS) for navigation, and the relative 
observations are the only data for integration. The relative 
distance is the data to integrate. One of the cooperative 
navigation methods is using the total error covariance ma-
trix as follows (Roumeliotis & Bekey, 2002):

11 12 13

21 22 23

31 32 33

CNS

P P P
P P P P

P P P

 
 =  
  

, (18)

where Pii is the covariance matrix of ith agent and Pij is 
the cooperative covariance matrix between the ith and jth 
agents. The values of the main diagonal elements of the 
matrix PCNS or Pii are obtained in the prediction phase ac-
cording to Equation (6), but cooperative elements, i.e.Pij, 
are obtained from the following equation:

T
ij i ij jP F P F+ −= . (19)

The first step is considering a zero matrix with its val-
ues. In the update steps, the matrix PCNS is also updated 
via Equation (11). When the agents do not meet each 
other, or the relative data is not been observed, the non-
diagonal elements will be obtained from the following 
equation, which will not affect the cooperative navigation 
(Roumeliotis & Bekey, 2002).

   ,   T
i i ij i ij jP F P P P F+ − − −= = . (20)

Equation (20) will be valid until a relative observation 
occurs and enters the integration.

5. Optimal formation equations

In this section, the goal is to achieve equations that make 
cooperative navigation accuracy as a function of forma-
tion. Therefore, the best variable representing the accu-
racy of cooperative navigation is the total error covariance 
matrix. Using the concept of determinant or trace of this 
matrix can be a good criterion for evaluation. The lower 
the two values are, the higher the navigation accuracy will 
be. Therefore, an equation should be looked for that mini-
mizes the determinant or trace of total error covariance 
matrix by changing the formation geometry between the 
agents. Newton’s method is used for this purpose. New-
ton’s method is based on gradient and hessian that in each 
step can obtain the best solution of the next step for the 
variable states. Substituting Equations (7), (8), and (9) in 
Equation (11), the covariance error matrix for each factor 
can be written as follows:

( )| 1| 1
T T

k k k k k k kk kP F P F G Q G− −= + −…

( ) ( )( )
( )

1
1| 1 1| 1

1| 1 .

T T T T T T
k k k k k k k k k k k kk k k k k k

T T
k k k k k kk k

F P F G Q G H H F P F G Q G H R

H F P F G Q G

−

− − − −

− −

+ + +

+

(21).
By substituting Equations (12) and (13), an equation 

is formed in which the error covariance matrix will be a 
function of the agents’ positions, which is specified in the 
following equation:

1| 1 1| 1

1| 1 1| 1

ˆ ˆ

|

ˆ ˆ

1| 1
, ,

, ,

k k k k k k

k k k k k k

T

k k
x u x u

k k T

k
x u x u

f f
I dt P I dt

x x
P

f f
dt Q dt

u u

− − − −

− − − −

− −

     ∂ ∂   + + +    ∂ ∂    = … 
    ∂ ∂    
    ∂ ∂     

 
1| 1 1| 1

| 1

1| 1 1| 1

1| 1

1| 1
, ,
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1|

ˆ ˆ

ˆ

ˆ ˆ

ˆ ,

k k k k k k

k k

k k k k k k

k k k

T

Tk k
x u x u

T
x

k
x u x u

k
x u

k

f f
I dt P I dt

x x h
x

f f
dt Q dt

u u

f
I dt P

x
H

− − − −

−

− − − −

− −

− −

−

     ∂ ∂   + + +    ∂ ∂    ∂     × … 
 ∂      ∂ ∂    

    ∂ ∂     
−

 ∂ +
 ∂
 ×

1| 1

1| 1 1| 1

1

1
,

, ,

ˆ

ˆ ˆ

k k k

k k k k k k

T

k
x u

T
kkT

k
x u x u

f
I dt

x
H R

f f
dt Q dt

u u

− −

− − − −

−

−

 
 
 
 
 
 
 
 
 
 

… 
       ∂  + +   ∂      + 
       ∂ ∂           ∂ ∂         

1| 1 1| 1

| 1

1| 1 1| 1

ˆ
1| 1

, ,

,

ˆ

ˆ ˆ ,

ˆ

k k k k k k

k k

k k k k k k

T

k k
x u x u

T
x

k
x u x u

f f
I dt P I dt

x xh
x

f f
dt Q dt

u u

− − − −

−

− − − −

− −

     ∂ ∂   + + +    ∂ ∂   ∂     × × × 
 ∂       ∂ ∂    
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1| 1 1| 1

1| 1 1| 1

1| 1
, ,

, ,

ˆ ˆ

ˆ ˆ

.
k k k k k k

k k k k k k

T

k k
x u x u

T
k kkT

k
x u x u

f f
I dt P I dt

x x
H H R

f f
dt Q dt

u u

− − − −

− − − −

− −

       ∂ ∂   + + +     ∂ ∂      + 
     ∂ ∂     
     ∂ ∂       

(22)
Having the covariance matrices of each agent and us-

ing the Equations (18), (19), and (20), the total covari-
ance matrix is obtained as a function of the positions of 
the three agents. Therefore, the optimization problem was 
defined as follows:

“It is desirable to position the agents at any time such 
that the determinant or trace of total covariance matrix 
minimizes.”

( ) ( )
( ) ( )1 1 2 2 3 3, , , , ,

   

or .f

f CNS
X x y x y x y

f CNS

f X determinant P
min

f X trace P∈  

 =


=
(23)

Accordingly, Newton’s method will be used to achieve 
this goal. Using this method, in each step, the next best 
place of agents is expected to minimize the optimality 
criterion. This movement towards minimization will be 
achieved through the steps that will lead to the next best 
place for minimization of the determinant or trace of the 
matrix PCNS:

1k k k
f fX X+ = + d , (24)

where dk will be a function of the jacobian and hessian of 
the covariance matrix and it will be obtained as follows 
(Fletcher, 2000):

( ) 1k k kG g
−

d = − , (25)

where, gk and Gk are jacobian and hessian of ( )k
ff X  re-

spectively:

( ) ( )2   ,   k kk k
f fg f X G f X= ∇ = ∇ . (26)

Therefore, if the Jacobin and Hessian of the matrix 
( )k

ff X  can be obtained simultaneously, it can be ex-
pected that the optimal formation will be formed in the 
mission.

6. Simulation

In this section, the presented algorithm will be simulated. 
The simulation was performed in two modes using actual 
data for the cooperative navigation algorithm and mod-
eled data for the optimal formation algorithm.

6.1. Offline simulation with actual data

Real IMU was used to validate the cooperative navigation 
algorithm. The output of two micro-electromechanical 
system (MEMS)  IMU, which is stationary at a constant 

distance from each other in parallel, is used for navigation 
for two minutes. Using this data and inaccurate alignment, 
navigation has been simulated with and without CNS. 
These sensors are GY-87 and GY-955. In order to use the 
CNS algorithm better, a reference point is also considered 
as a virtual IMU with ideal navigation (i.e., the error of the 
navigation variables is zero). Figure 1 shows the layout of 
these IMUs, which is read through an ARDUINO board.

Figure 1. IMUs GY-955 and GY-86

In addition, Figure 2 shows the error of the IMU GY-86 
and the IMU GY-955 navigation variables when the CNS 
is not used.
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Figure 2. State navigation error for IMU GY-86 (left) & State 
navigation error for IMU GY-955 (right) (No CNC)

In other simulations, the same outputs are entered 
into the CNS algorithm. Figure 3 shows the error of the 
IMU GY-86 navigation variables and the error of the 
IMU GY-955 navigation variables when the CNS was 
used. It can be seen that the amount of all errors is less 
than before.
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Figure 3. State navigation error for IMU GY-86 (left) & State 
navigation error for IMU GY-955 (right) (Via CNC)
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The data of the Table 2 show that the error is very high 
when each of the IMUs navigates separately, while the er-
ror is significantly reduced when the same data is entered 
into the CNS algorithm.

Table 2. Comparison of the error of IMU navigation variables

States Error Without CNS With CNS

IM
U

 G
Y-

86

j Error (deg) 279.2998 45.449
vx Error (m/s) 11.4931 0.19547
vy Error (m/s) 14.7345 –2.0193
x Error (m) 410.1866 13.063
y Error (m) 1345.6542 –7.9911
xy MSE (m) 175.7176 6.9324
xy Final Error (m) 1406.783 15.3134

IM
U

 G
Y-

95
5

j Error (deg) 107.0979 25.9609
vx Error (m/s) 15.6274 0.64993
vy Error (m/s) 97.8021 –3.7261
x Error (m) 4480.2852 9.699
y Error (m) 4202.6616 –20.8414
xy MSE (m) 684.7162 4.276
xy Final Error (m) 6142.9082 22.9877

Total Error (m) 7549.6914 38.301
Percentage Reduction – 99.49%

6.2. Simulation for optimal makeup

In another simulation, three agents which have a MEMS 
navigation system are considered, such that the accuracy 
of one of them is more than the others. These agents move 
freely on the 2D space due to the acceleration applied to 
them. The mission for these agents is to move from one 
position to another, according to Table 3, and the features 
of the sensors intended for the agents are presented in the 
same table.

Table 3. Initial and desired position and inertia navigation 
sensor error  of agents

Gyro 
Error  
(o/hr)

Accelerometer 
Error (g)

Desired 
Position 
[xd,yd]

Initial 
Position 
[x0,y0]

Agent

0.010.01[300; 90][10; 0]Agent #1
0.30.3[360; 120][0; 10]Agent #2
0.30.3[330; 150][0; 0]Agent #3

According to the simulation, the output of the inertial 
navigation system for the agents’ path to the desired posi-
tions is shown in Figure 4. In this simulation, each agent 
uses only its navigation system and does not use coopera-
tive navigation.

Through the path of the agents, moving from the ini-
tial position to the desired position, which is achieved due 
to the control accelerations, the errors of the navigation 
variables are plotted as diagrams in Figure 5. These dia-
grams show that the navigation error increases over time 
and the navigation error of agents #2 and #3 is greater 
than that of agent #1, and the reason is that the sensors 
selected for agents #2 and #3 are more inaccurate than 
that of agent #1.
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In another simulation, the same motion scenario was 
run using CNS, the results of which are presented in Fig-
ure  6 and Figure  7. In these figures, it is clear that the 
error of the navigation states variable has been reduced 
to the extent that the error of all three agents is almost in 
the same range.

In the third simulation, in addition to CNS, the op-
timal formation was also considered such that along the 
way, the agents, in addition to going to the final desired 
locations, also tended to form the formation to minimize 
the trace of the total covariance matrix.

In order to have a balance between going towards the 
desired formation and going towards the final location, 
two types of control acceleration have been considered: 
one of which leads the agent to the final desired location 
and the other to the desired formation. Equation  (27) 
shows the combination of these control accelerations:

( )1 F c F fa W a W a= − +
  

, (27)

where ca


 is the control acceleration to reach the final po-
sition,  fa



 is the control acceleration to achieve the opti-
mal formation, and w is also the weighting factor between 

these two accelerations such that its value varies between 
0 and 1 and it proposes to be defined as follows:

/F e dW X X= , (28)

where Xe is the error position of the agents with respect 
to the final goals, and Xd the final goals they must reach. 
Based on Equation (28), it is clear that in the beginning, 
when the distance between the agents and the final goals 
is significant, w is close to 1. Gradually, as the agents get 
closer to the final goals, the w will be close to 0. This pro-
cess of change means that in the beginning, achieving the 
optimal formation is more important because with bet-
ter formation, the error will be reduced, and eventually 
achieving the goals will be more important because the 
mission was to reach the final locations. Moreover, if the 
formation has a high coefficient, the control accelerations 
will prevent the agents from reaching the final goals. Fig-
ure 8 shows the trend of changes in this factor over time. 
Figure 9 also shows the path of the agents to reach the fi-
nal goals. In this figure, the path is different from the paths 
shown in Figure 4 and Figure 6 because the agents tend to 
form the optimal formation. In fact, in addition to trying 
to reach the final desired locations, agents try to form the 
geometry at any time to reduce the total navigation error 
in the CNS algorithm.

Table 4 represents the comparison of these three sim-
ulations. It is clear that when the CNS is not used, each 
agent has outputs with different accuracy according to the 
accuracy of its navigation sensors, but when the CNS is 
used, the navigation error of all agents is almost in the 
same range. Overall, navigation accuracy has improved by 
about 43%. For example, agent #3 has a position error of 
about 4.8 meters when the CNS is not used but a position 
error of about 2.4 meters when CNS is used. This improve-
ment is also achieved for agent #2, which has increased 
from a position error of about 5.4 meters to an error of 
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Figure 7. State navigation error for agent #1 (left), agent #2 (middle) and agent #3 (right) (Via CNC – No Formation)
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about 1 meter, but, in agent #1, the issue is different, and it 
seems the position error of this agent has increased. One of 
the issues with CNS is that just like a precision navigation 
system which has a positive effect on a less accurate navi-
gation system, a less accurate navigation system will have 
a negative effect on a more accurate navigation system. 

Therefore, the error of agent #1 increased. Also, when the 
optimal formation algorithm is used to minimize the trace 
of the total covariance matrix, the navigation error further 
reduces in addition to the CNS. This error reduction is 
about 79% less than when there is no algorithm.

Conclusions

Improving the performance of cooperative navigation by 
adding the relative distances between agents as well as the 
proper formation is investigated in this paper. The former 
method was evaluated through various simulations and 
experimental tests using two real agents equipped with 
INS. Experimental results show that the navigation errors 
would significantly reduce, such that the total position er-
ror reduced from 7550 m to 38.3 m. In the simulation, co-
operative navigation was simulated considering the rela-
tive distance between three agents with inertial navigation 
systems with different accuracy. The result was interesting: 
using CNS, the total navigation accuracy increases, and 
all the navigation systems reach the same range of preci-
sion. The position error of the agents without consider-
ing CNS became 0.11 m, 5.48 m, and 4.82 m, respectively, 
but considering CNS, the errors became 2.38 m, 1.06 m, 
and 2.43 m, respectively. Therefore, it was seen a 43.68% 
improvement in navigation performance. In addition, 
applying the optimal formation caused the reduction of 
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Table 4. Comparison of error of agents’ navigation in three simulations

States Error Without CNS and Formation With CNS With CNS and Formation

A
ge

nt
 #

1

j Error (deg) –1.7394e-05 –6.7095e-02 –4.9713e-02
vx Error (m/s) –4.3141e-03 –5.2514e-03 –8.2655e-03
vy Error (m/s) –6.0243e-03 –5.9682e-02 –1.2583e-02
x Error (m) –5.9791e-03 8.9323e-03 1.5645e-01
y Error (m) –1.1238e-01 –2.3762 –6.1521e-01
xy MSE (m) 1.9575e-02 4.0855e-01 1.0816e-01
xy Final Error (m) 1.1254e-01 2.3762 6.3479e-01

A
ge

nt
 #

2

j Error (deg) –2.7147e-05 1.8343e-02 4.6838e-03
vx Error (m/s) 9.4365e-02 –1.0703e-01 –1.1658e-01
vy Error (m/s) –6.5613e-02 6.2130e-02 4.0756e-02
x Error (m) 3.8851 –9.8628e-01 –4.7185e-01
y Error (m) –3.8664 –3.9276e-01 4.3759e-01
xy MSE (m) 9.9580e-01 3.3156e-01 1.1734e-01
xy Final Error (m) 5.4812 1.0616 6.4353e-01

A
ge

nt
 #

3

j Error (deg) –1.3953e-04 1.3013e-02 8.8601e-03
vx Error (m/s) –3.2008e-02 –1.3173e-01 –8.3787e-02
vy Error (m/s) –5.6724e-02 2.7972e-02 7.9591e-02
x Error (m) –1.0213 –1.9941 –9.0905e-01
y Error (m) –4.7166 –1.3889 1.4040e-02
xy MSE (m) 8.8573e-01 4.8294e-01 1.4211e-01
xy Final Error (m) 4.8259 2.4301 9.0916e-01

Total Error (m) 10.4196 5.8679 2.19
Percentage Reduction – 43.68% 78.98%
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navigation error more than before, such that in this case, 
the position error for the agents was 0.62 m, 0.64 m, and 
0.91 m, respectively, which showed a 78.98% improvement 
in navigation performance. An advantage of this method 
was that without using any aided navigation system (e.g., 
GPS), the navigation accuracy increased, which means 
a reduction in the cost of navigation equipment. Since 
achieving suitable formation requires considerable com-
puting, other computational methods can be attempted in 
the future. It is even possible to provide other optimiza-
tion criteria for the formation to reduce the navigation 
error further. For example, the Cramer-Rao lower bound 
(CRLB) criterion can be considered as the optimality cri-
terion. Movement Formation can also be based on other 
goals. For example, the agents can perform better in si-
multaneous localization and mapping (SLAM).
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