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Abstract. This paper presents a comparison of fuel-optimal and shortest paths of an unmanned combat aerial vehicle 
(UCAV) with obstacle avoidance. A nonlinear constrained optimization algorithm is applied to obtain the optimal paths. 
An initial value problem (IVP) and an inverse-dynamics approach are used separately to determine optimal paths for vari-
ous scenarios and in order to reduce computation time. While inputs of the optimization algorithm are discrete control 
variables in the IVP method, discrete state variables are used as inputs in the inverse-dynamics method. The minimized 
path segments of the geometrical model provide an initial estimation of the heading angle for the aircraft flight mechanics 
model. The number of variables used by the optimization algorithm has a direct effect upon the optimal accuracy; however, 
the computation time is inversely proportional to the number of the variables. Simulation results demonstrate that the pro-
posed IVP method effectively converges to optimal solutions.

Keywords: fuel-optimal path, shortest path, geometric approach, initial value problem, inverse dynamics, fmincon, obsta-
cle avoidance.

Introduction

Unmanned Aerial Vehicles (UAVs) can be controlled au-
tonomously by an operator outside of the vehicle or via an 
onboard computer. UAV designs are based upon mission 
parameters and their objectives. These categories include 
size, user, and mission purpose (Force, 2011; Hanscom & 
Bedford, 2013). The largest military aircraft in this study, 
the X-47A, is used mainly for intelligence, surveillance, and 
reconnaissance (ISR) mission purposes. The primary objec-
tive of the X-47A is to perform ISR at cruising altitude by 
avoiding obstacles, which are radars placed on aerial maps. 
It is assumed that the locations and detection ranges of ra-
dars are known in advance. Fuel efficiency directly impacts 
the range of an aircraft; hence, fuel consumption should be 
minimized to increase range. Several parameters affect the 
fuel efficiency of an aircraft. Some of these parameters (in-
cluding engine types and number, aspect ratio, wing area, 
empty weight, etc.) are constant during flight. Conversely, 
other parameters (including operating altitude, throttle, 
flight speed, lift-to-drag ratio (L/D), etc.) can be set during 
the flight in order to reduce fuel consumption. Therefore, 
path optimization techniques are essential to determine the 
optimum parameters and the best performance.

Path planning is one of the most popular subtopics in 
UAV applications. Different methods and software pack-
ages have been developing for solving path-planning prob-
lems. The Mixed Integer Linear Programming (MILP) 
method was applied to obtain optimal trajectories for 
single or multiple vehicles (Albert et al., 2017; Cafieri & 
Durand, 2014; Chen et al., 2020; Richards & How, 2002; 
Schouwenaars et  al., 2001; Zhang et  al., 2014). The dy-
namic model was changed into a linearized form by using 
MILP with discrete states and controls. Schouwenaar et al. 
(2001) investigated the fuel-optimal trajectory for multi-
ple vehicles to determine ideal obstacle avoidance. The au-
thors utilized the CPLEX and A Mathematical Program-
ming Language (AMPL) optimization algorithm. Richards 
and How (2002) used the MILP method to minimize fuel 
consumption and flight time in two separate scenarios. 
The authors replaced circular obstacle constraints with 
square and polygon obstacles to convert nonlinear con-
straints to linear constraints. Chen et al. (2020) presented 
the MILP and improved A-star algorithms for UAV path 
planning problems in order to improve the node selection 
strategy and to effectively achieve the optimal path. The 
major drawback of the MILP method is the restriction to 
linear problems.
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Bortoff (2000) developed a two-step path planning 
algorithm for UAVs to minimize the total ground-track 
length. In the first step, a Voronoi diagram with discrete 
vertices and edges was created. Next, the virtual-forces 
approach was implemented using the Voronoi diagram’s 
solution as an initial guess.

The cruise is the longest part of the flight. Ardema and 
Asuncion (2009), Fan et  al. (2020), Jensen et  al. (2015), 
and Turgut et al. (2014) present cruise-flight optimization 
studies to reduce the fuel consumption of commercial air-
craft. Ardema and Asuncion (2009) compared the results 
of a singular optimal control problem and the Brequet 
range equation (for constant altitude and velocity). Green’s 
theorem was used to solve the singular optimal control 
problem. Fan et al. (2020) developed a new optimization 
algorithm for cruise flight trajectory where optimal cruise 
speed is parameterized by a linear function of altitude to 
reduce the operating cost of a flight.

Hybrid propulsion system is one of the promising 
technologies as it contributes to environmental sustain-
ability. The reduction in energy consumption results in a 
decrease in environmental pollution (Tian et  al., 2019). 
To reduce energy consumption, Bai et al. (2020) and Do-
brokhodov et al. (2020) recently presented energy-optimal 
guidance algorithms for hybrid UAVs.

A Direct Collocation with Nonlinear Programming 
(DCNLP) method was utilized to solve optimal control 
problems (Geiger et  al., 2006). First, cubic polynomial 
functions approximated the trajectories between state and 
control nodes. Second, the optimal control problem was 
converted to a nonlinear programming problem. Lastly, 
MATLAB’s fmincon solver was used to obtain the opti-
mum state and control values. Liu et al. (2012) used the 
Gauss pseudospectral method (GPM) to find the optimal 
solution for reconnaissance missions of stealth UAVs. The 
authors investigated minimum fuel consumption, mini-
mum flight time, and minimum probability of detection 
in separate cases. To solve optimal control problems in 
Mohan et  al. (2012), the pseudospectral method and a 
rapidly exploring random tree (RRT) algorithm were uti-
lized. The RRT algorithm (Ferguson & Stentz, 2006; Mo-
han et al., 2012; Tsai et al., 2015; Véras et al., 2019; Zam-
mit & Van Kampen, 2018), which seeks the shortest path 
between two coordinates, provided initial guesses for the 
optimal control problems. Tsai et al. (2015) employed the 
RRT and A-star algorithms to determine a low-cost flight 
path for multirotor aerial vehicles. Call (2006) assessed the 
RRT and genetic algorithms to compare their convergence 
properties and computation times in the pre-mission path 
planning phase. The RRT algorithm gained an advantage 
over the genetic algorithm for computation time, whereas 
the genetic algorithm determined a better path with con-
vergence towards a solution. Macharet et al. (2010), Shima 
et al. (2005), Sonmez et al. (2015), and Wang and Chen 
(2014), also present various genetic algorithms for UAV 
path designs. Wang and Chen (2014) developed a new 
method to improve the traditional genetic algorithm by 
reducing computation time.

The primary goal of this study is to find fuel-optimal 
and shortest paths in a level flight at 9,144 m (30,000 ft) for 
two different scenarios (one-way path with one destina-
tion point and closed path with three destination points) 
and to make a comparison between them. The secondary 
goal is to reduce the computation time of the optimiza-
tion algorithm. To achieve these two objectives, the IVP 
and the inverse-dynamics methods were implemented in 
MATLAB’s fmincon algorithm. Inputs of the optimization 
problems are discrete control variables (throttle and bank 
angle) in the IVP method while discrete state variables 
(velocity, heading angle, and mass of the aircraft) are used 
as inputs in the inverse-dynamics method. Simulation sce-
narios are run for the flight mechanics model with 10–50 
discrete stages on the path. This study differs from the pre-
vious work on path optimization methods by developing 
a geometric short-path approach for the flight mechanics 
model in order to improve convergence to the optimal 
paths. Simulation results demonstrate that the use of the 
geometric model in the inverse-dynamics method is a key 
factor in quickly and effectively achieving the optimiza-
tion results for the flight mechanics model.

1. System model

1.1. Aircraft description

The Northrop Grumman X-47A Pegasus is used as the 
UCAV model for optimization problems. The aircraft was 
produced by Boeing and Northrop Grumman as the first 
variant of the X-47 series. General specifications of the 
X-47A are presented in detail in Cihan (2016). Oswald 
efficiency (e) and zero-lift drag coefficient (CD0) are not 
available because of its classified nature. X-47A is a tail-
less delta-wing aircraft. Typical values of Oswald efficiency 
and zero-lift drag coefficient for subsonic delta-wing jets 
are in the range of 0.70–0.75 and 0.009–0.014, respectively. 
After some preliminary calculations were performed us-
ing the data in Brandt et al. (2004), Cihan (2016), Sadraey 
and Müller (2009), these aerodynamic properties are set 
as CD0 = 0.011 and e = 0.75, which satisfy the published 
specifications for range of 2,778 km (1500 nmi), service 
ceiling of 12,192 m (40,000 ft), and maximum speed (high 
subsonic).

1.2. Propulsion system

The X-47A is powered by a Pratt & Whitney Canada 
JT15D-5C engine. It is a low bypass ratio turbofan engine 
with thrust = 14,190 N (3,190 lbf) at takeoff. Detailed in-
formation about the engine specification can be found in 
Cihan (2016). Using MATLAB, a function was created for 
calculating thrust (T) and thrust specific fuel consump-
tion (TSFC or ct) given altitude (h) and velocity (V) as 
inputs. Fuel mass-flow rate can be computed from thrust 
and TSFC:

fuel tm c T= − . (1)
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Figure 1 presents maximum thrust available and 
TSFC vs. velocity profiles at 9,144 m (30,000 ft) for Pratt 
& Whitney Canada JT15D-5C engine. Figure 1 shows 
that the thrust (blue curve) and TSFC (orange curve) ap-
proximately follow exponential decay and linear growth 
profiles with velocity, respectively. The fuel efficiency of 
a low-speed flight is better than a high-speed flight; on 
the other side, thrust decreases with velocity, as seen in 
Figure 1. Therefore, velocity should be optimized in order 
to minimize the fuel mass-flow rate in Eq. (1) for the fuel-
optimal path planning problem.

1.3. Obstacle avoidance

Primary surveillance radars (PSRs) are used as obstacles 
in this study. The maximum detectable range of radar can 
be calculated with the radar cross section (RCS) of an 
aircraft and specifications of the radar system; see Cihan 
(2016) for detailed information. PSRs scan circular areas 
on aerial maps, so circular obstacles are used to define 
inequality constraints in the optimization problems.

2. Optimization

Fmincon is a nonlinear programming solver in MATLAB. 
The fmincon algorithm searches the design space for the 
minimum value of a constrained nonlinear multivariable 
function. In the optimization problem, initial guesses for 
variables should be chosen wisely so that convergence to 
the optimum values occurs quickly.

2.1. Problem definition

The goal of the optimization problem is to separately 
achieve the fuel-optimal path (case 1) and shortest path 
(case 2). For case 1, the integration of the mass-flow rate is 
used as a cost function in Eq. (2a) to determine minimum 
fuel consumption in the optimization problem while the 
integration of velocity is defined by Eq. (2b) as a cost func-
tion for case 2 to provide distance s along the flight path. 
The problem statement is

Minimize:
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where V is the velocity, Ψ is the heading angle, D is the 
drag force, L is the lift force, and Φ is the bank angle. State 
differential equations (SDEs) in Eq. (3) are the horizontal 
velocities in the direction of X and Y axes, acceleration, 
heading rate, and mass-flow rate, respectively. Initial con-
ditions for mass and position coordinates are known and 
fixed. On the other hand, the initial velocity and initial 
heading angle of the aircraft are free. The constraints for 
both optimization problems (case 1 and case 2) are

( ) ( )
( ) ( )

eq target

eq target

1 0

2 0

f

f

c X t X

c Y t Y

 = − =


= − =
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( )( ) ( )( )2 2 2
,radar ,radar ,radari i i ic X t X Y t Y r= − + − > . (5)

Equality constraints in Eq. (4) show that the aircraft’s 
coordinates must match the target’s coordinates at the end 
of the cruise. The aircraft must also be outside of the cir-
cular radar detection range during the cruise for inequal-
ity equations in Eq. (5) to be satisfied. Inverse dynamics 
and IVP methods are applied in optimization problems.

2.2. Method 1 – Initial Value Problem (IVP)

The MATLAB function ode45 is used to integrate the 
SDEs. Control variables throttle (δ) and bank angle (Φ) 
are the inputs to the dynamic system. Each control vari-
able has N discrete values along the trajectory. In addition, 
scaling factors, velocity a , heading _anglea , and flight _ timea , are 
used as optimization variables to determine the free-flight 
time ( flightt ), initial velocity ( initialV ), and initial heading an-
gle ( initialΨ ). Hence, the total number of variables is N(δ) 
+ N(Φ) + velocity a  + heading _anglea  + flight _ timea  = 2N+3. In 
the optimization problems, lower and upper bounds are 
set for the two control variables. Throttle varies between 
zero and one, which corresponds to 100% throttle and 
maximum engine thrust at a given velocity and altitude. 
The lower and upper bounds for bank angle depend on 
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Figure 1. Thrust and TSFC vs. velocity at 9,144 m
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the weight of the aircraft W, maximum lift-over-drag ratio 
( )max/L D , and maximum thrust available maxT :

( )
1

max
maxmax

cos
/

W

L D T
−
 
 Φ =
 
 

. (6)

Positive and negative signs for bank angle indicate left 
and right turns, respectively.

2.3. Method 2 – inverse dynamics

Discrete state variables velocity V, heading angle Ψ, and 
mass m are used as the inputs for an inverse-dynamics 
approach to solve the SDEs. Then, the control variables 
throttle (δ) and bank angle (Φ) can be computed from 
state rates in Eq. (3) and the balance of forces normal to 
the level flight path:

cosL W mgΦ = = . (7)

The bank angle (Φ) equation is derived from Eq. (7) 
and the fourth SDE in Eq. (3):
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To compute the kinetic equations Ẋ and Ẏ, N discrete val-
ues are defined for velocity and heading angle along the 
trajectory. Linear segments connect the discrete values. 
The cumulative trapezoidal numerical integration method 
(cumtrapz) in MATLAB is applied to integrate the kin-
ematic equations. The cumtrapz method determines the 
area under the velocity component curves to obtain the 
position coordinates. The slopes of the segments on the 
velocity and heading-angle curves represent acceleration 
V  and heading rate Ψ , respectively. To calculate the fifth 
SDE (mass-flow rate), the thrust required is computed us-
ing the third SDE with the mass of the aircraft, accelera-
tion, and drag at each discrete stage:
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where Δt is the elapsed time between two discrete stages, 
which can be found by dividing the total flight time by the 
number of linear segments:
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At the first discrete stage, the mass of the aircraft is 
known and fixed, so there are N-1 discrete values and N-1 
equality constraints for the mass variable:
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In the inverse-dynamics method, only the flight-time 
scaling factor flight _ timea  is considered as an optimization 
variable because initial velocity and initial heading angle 
are defined by N discrete values. The total number of vari-
ables is N(V) + N(Ψ) + N-1(m) + flight _ timea  = 3N.

The procedure for finding an optimal path by avoiding 
obstacles differs from the procedure of the optimal path-
planning without obstacles. Our optimal-path design by 
avoiding obstacles follows a three-step process: 1) com-
puting the shortest path that avoids the static obstacles 
in a horizontal plane without regard for flight mechan-
ics, 2) utilizing a geometric approach that simplifies the 
shortest path into linear segments without regard for flight 
mechanics, and 3) solving flight mechanics optimization 
problems.

Figure 2 shows a simple simulation environment 
where three circular obstacles are added between point 
A and point B. The M-file shpath (Cihan, 2016; Kleder, 
2008) is performed to determine the shortest path from 
point A to point B while avoiding obstacles. The inputs of 
the M-file are a grid matrix (zeros (blue area in Figure 2) 
represent safe area and ones (red area in Figure 2) repre-
sent obstacles), initial coordinates (Xi, Yi), and destination 
coordinates (Xf, Yf). The M-file searches the X and Y way-
points of the path by tracking zeros on the grid matrix. 
For the first step, the shortest path is determined as the 
green curve in Figure 2.

In the second step, a geometric approach is applied 
to provide a good estimate for N discrete heading-angle 
variables. N+1 stages are chosen from the shortest path in 
Figure 3 in order to have N linear segments and N slopes 
of these segments. Each slope is used to estimate the head-
ing-angle variables for the flight mechanics model:
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where X and Y are the discrete values without regard for 
flight mechanics equations of motion. The total length of 
the N segments is minimized in the Fmincon optimization 
algorithm:

Minimize:
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Figure 2. Shortest path for a sample obstacle-avoidance 
simulation environment without regard for flight mechanics
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N-1 equality constraints were used in the geometric-
optimization problem so that the length of each segment 
is equal in order to improve the accuracy of the flight 
mechanics model. Furthermore, inequality constraints in 
Eq. (5) are considered in the geometric approach in order 
to avoid the circular radar.

3. Numerical results

3.1. Optimal paths without obstacles

In the absence of obstacles, the minimum-fuel path can 
be achieved by following the shortest (straight-line) path 
between two specified coordinates. IVP (method 1) and 
inverse dynamics (method 2) are executed to attain a 
minimum-fuel path without obstacle avoidance for the 
straight, level flight at 9,144 m (30,000 ft). The initial co-
ordinates of the cruise are set to (0, 0), and the destination 
point is (1296.4, 1296.4) km, which is equivalent to (700, 
700) nmi. Ten discrete stages are taken on the straight-line 
path for method 1 with 23 variables and method 2 with 30 
variables. Note that after comparing the fuel consumption 
results in Cihan (2016) for variable-cruise altitude and 
constant-cruise altitude, it was found that constant-cruise 
altitude is more fuel-efficient. Hence, cruise altitude re-
mains constant at 9,144 m (30,000 ft) for the optimization 
problems in this paper.

In the first method, initialV =  467.61 km/h, initialΨ =  
45 deg, and flightt =  14,340 sec was computed using the 
ode45 and Fmincon solvers. The optimal throttle is be-
tween 0.651 and 0.381 during the cruise. Bank angle re-
mains zero deg because the aircraft flies with an expected 
45 deg heading angle during cruise due to the lack of ob-
stacles.

In the second method, the optimal velocity continually 
decreases from 521.58 km/h to 400.51 km/h with 14,497 sec 
of flight time. The optimal bank angle (0 deg) and heading 
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Figure 4. Shortest path by avoiding 16 radars without regard 
for flight mechanics for scenario 1

angle (45 deg) are the same as method 1. The mass of the 
aircraft is 2,390.48 kg (163.8 slugs) at the initial for both 
methods and decreases with time due to fuel consumption. 
Table 1 compares the numerical solutions for methods 1 
and 2. The fuel efficiency of the inverse-dynamics method is 
slightly better than the IVP method. Although the IVP has 
fewer optimization variables, the inverse-dynamics method 
solves the optimization problem approximately four times 
faster (note that the computer used for analyses in this 
work has the following system specifications: Intel® Core™ 
i5-3230M CPU @ 2.67GHz and 4 GB RAM). Consequently, 
the inverse-dynamics method is only used for the remain-
der of the optimization problems.

Table 1. Optimization results of initial value problem and 
inverse dynamics methods

Method

Number 
of opti-

mization 
variables

Computa-
tion time

(sec)

Minimized 
fuel con-
sumption 

(kg)

Total 
Range
(km)

Initial value 
problem

23 70.0 545.52 1,833.4

Inverse 
dynamics

30 16.8 542.46 1,833.4

3.2. Optimal paths with obstacle avoidance

In this section, the fuel and shortest-path optimization 
problems are examined under two different obstacle 
avoidance scenarios: “one-way path with one destination 
point” and “closed path with three destination points.”

3.2.1. Scenario 1 – one-way path with one 
destination point

The objective of this scenario is to compare the fuel-opti-
mal and shortest-path cases for one destination mission in 
an obstacle-rich simulation environment. Before starting 
to solve flight mechanics optimization problems, the short-
est path and geometric approach steps were implemented 
as described in section 3. Figure 4 presents the simulation 
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environment for the fi rst scenario with sixteen radars. Th e 
small radars (radar numbers 2, 4, 7, and 16) scan circles 
with 92.6 km (50 nmi) radius, and the detection ranges of 
the rest of the radars are 129.64 km (70 nmi). Th e green 
curve in Figure 4 shows the shortest path between the 
initial point (0, 0) and target point (1296.4, 1296.4) km 
(recall that the green curve in Figure 4 is achieved using 
the M-fi le shpath without regard for fl ight mechanics).

Aft er the shortest path was determined, 11 discrete 
stages were selected from the shortest path for the geomet-
ric approach to achieve 10 linear segments. Ten optimal 
segments and slopes are attained by minimizing the total 
length from Eq. (13). Figure 5 shows the geometric model 
solution for the fi rst scenario with 10 stages. Each segment 
slope implies an initial guess of the heading angle from 
Eq. (12) for the fl ight mechanics model. Th e total length 
of the 10 segments is 2,008.7 km.

Finally, the fuel and shortest-path optimization prob-
lems can be solved for fl ight mechanics using reasonable 
10 velocity (it is assumed that the initial estimation of ve-
locity is Vi = 450 km/h at each discrete state), 9 mass (the 
trend between mass and stage number is nearly linear, so 
the initial mass stages are estimated by a decreasing linear 
function with a slope function of 70 kg), and one fl ight-
time scaling (16,000 sec) variables with 10 heading-angle 
variables found from geometrical path segments. Th ese 30 
initial guesses are the initial point of the Fmincon optimi-
zation solver to minimize the fuel consumption and range 
into two separate cases. Figure 6 shows the fuel-optimal 
and shortest-path optimization results for the fi rst sce-
nario with 10 stages. Th e blue and magenta curves in Fig-
ure 6 represent, respectively, the fuel-optimal and short-
est paths by avoiding 16 PSRs. Th e aircraft  successfully 
completes the ISR mission in a level fl ight at 9,144 m for 
the fuel-optimal path with 591.2 kg of fuel consumption 
and 1,967.9 km of total range while for the shortest path 

Figure 5. Geometric model without regard for fl ight mechanics 
for scenario 1
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Table 2. Optimization results of heading angle for geometric 
and fl ight mechanics models

Segment 
number

Optimal slope 
for geometric 
model (deg)

Optimal 
heading angle 

for case 1 (deg)

Optimal 
heading angle 

for case 2 (deg)

1 23.2 21.1 24.9
2 36.5 31.5 28.2
3 48.9 52.7 50.7
4 21.1 15.3 17.7
5 60.3 77.9 82.8
6 92.8 82.9 82.4
7 40.5 22.8 23.5
8 16.2 17.3 23.2
9 34.5 62.1 74.2

10 81.5 84.4 72.0

with 624.9 kg of fuel consumption and 1,958.5 km of total 
range (9.4 km less than the total range of the fuel-optimal 
path). Although the total range values of fuel-optimal and 
shortest-path cases are close to each other, the optimal 
velocity profi les cause a diff erence in fuel consumption be-
tween fuel-optimal and shortest-path cases due to having 
diff erent optimal-velocity profi les.

Table 2 presents the optimized slopes from the min-
imized-path segments for the geometric model solution 
and optimal heading angles from the minimized-fuel 
(case 1) and minimized-range (case 2) paths for the fl ight 
mechanics model. For both cases, optimal heading an-
gles at each stage follow the trend of the optimized slopes 
from the geometric minimum-length optimization. Th is 
demonstrates that the geometric model provides a good 
prediction for the fl ight mechanics of the optimization 
problem.

Four additional fuel-optimal and shortest paths were 
determined for stage numbers with 20, 30, 40, and 50. 
Table  3 presents the simulation results of each case for 
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fuel consumption and total range. As the number of 
stages on the path increases, the fuel consumption and 
total range decrease due to the extra degrees of freedom. 
Table  3 shows that a higher number of stages offers lit-
tle performance gain in fuel consumption and total flight 
range between the desired initial and target coordinates. 
On the other hand, the Fmincon solver requires a higher 
computational cost to solve the optimization problem with 
a large number of discrete state variables.

Figure 7 shows velocity time histories for the fuel 
and shortest-path cases with 10 and 50 stages at 9,144 m 
(30,000 ft). Four optimized velocity profiles in Figure 7 are 
in a decreasing trend over time. Initial optimal velocity 
values for 50-stage cases are about 20–25% higher than 
for 10-stage cases. Figure 7 shows that the optimal veloc-
ity values in simulations other than case 2 with 10 stages 
are typically between 400 and 500 km/h while the velocity 
profile for case 2 with 10 stages has a wide range in order 
to intend to achieve the shortest path with smaller degrees 
of freedom. The total flight times for the four trials in Fig-
ure 7 are between 15,605 and 16,575 sec.

3.2.2. Scenario 2 – closed-circuit path with three 
destination points
This scenario aims to compare the fuel and shortest paths 
by flying over two fixed way-point destination coordinates 
and avoiding obstacles between starting and final destina-
tion coordinates. After the shortest path and the geomet-
ric model (recall once again that these two steps are done 
without regard flight mechanics equations of motion) 
were determined, the minimized-fuel and minimized-
range paths were acquired for the flight mechanics model 
with 20, 30, 40, and 50 discrete stages on the path in the 
second scenario (note that a 10-stage case cannot produce 
usable optimization results for this complex simulation 
environment). Figure 8 shows the fuel-optimal and short-
est paths for 50-stage scenarios. The aircraft starts cruising 
at point A (0, 0) and flies to the first way-point B. Once 
the aircraft passes way-point B, it heads towards second 
way-point C, and then it flies back to starting point A, 
as shown in Figure 8. Table 4 presents the optimization 
results of the minimized-fuel and minimized-range cases 
using 20, 30, 40, and 50 discrete stages in scenario 2. As in 
the first scenario, increasing the number of discrete stages 
offers better performance in fuel consumption and total 
flight range. The fuel efficiency of aircraft in scenario 2 
is slightly worse than in scenario 1 because the aircraft 
requires to perform sharper turns (especially around way-
points B and C) in scenario 2 to minimize fuel consump-
tion and total flight range.

Figure 9 shows the optimal velocity histories from the 
50-stage fuel and shortest-path optimization results in sce-
nario 2, as well as the stall speed profiles for these two op-
timization cases. The average optimal velocity range is be-
tween 400 and 500 km/h; however, the minimum velocity 
is observed around way-point C coordinates to make a 
sharp turning flight about 10,000 sec. At that point, the 
aircraft’s velocity is very close to the stall speed. After 
way-point C, the aircraft speeds up until it reaches the av-

Table 3. Comparison of fuel and shortest-path optimization 
results for scenario 1

Method Number 
of stages

Number of 
variables

Fuel con-
sumption 

(kg)

Total 
range 
(km)

Fuel-optimal 
paths

10 30 591.2 1,967.9
20 60 586.4 1,957.0
30 90 585.1 1,956.3
40 120 584.4 1,955.3
50 150 583.9 1,955.0

Shortest 
paths

10 30 624.9 1,958.5
20 60 600.9 1,952.4
30 90 596.6 1,951.1
40 120 600.2 1,950.7
50 150 592.6 1,950.5
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Figure 7. Optimal velocity profiles for four simulations in 
scenario 1
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Conclusions

In this paper, the fuel and shortest-path optimization prob-
lems were investigated, and their results for various scenar-
ios were compared. The state differential equations (SDEs) 
were solved by initial value problem (IVP, method 1) and 
inverse dynamics (method 2) approaches. By comparing 
the two methods for obstacle-free problems, the results 
indicated that the inverse-dynamics method converged to 
the solution more rapidly than the IVP method. There-
fore, only the inverse-dynamics method was used in the 
obstacle-rich simulation scenarios: one-way path with 
one destination point (scenario 1) and closed-circuit path 
with three destination points (scenario 2). In the second 
method, a new approach has been developed for both min-
imized-fuel and minimized-range paths by avoiding obsta-
cles in order to improve convergence to the optimal paths. 
Firstly, the shortest path was found among the safe areas 
(without regard for flight mechanics). Then the geometric-
optimization problem was applied to estimate initial head-
ing angles at discrete stages (without regard for flight me-
chanics). Lastly, these initial guesses are used for the flight 
mechanics of the optimization problem. Initial guesses for 
the optimization algorithm influenced the accuracy of op-
timization results and computation time. The geometric 
short-path model generated a high-quality initial guess for 
the heading angle profile in the inverse dynamics method. 
As the number of the discrete stages increased, the fuel 
efficiency becomes slightly better; however, the increase in 
computation time is a poor trade-off for beyond a certain 
higher number of stages. The simulation results showed 
that the minimized-fuel and minimized-range paths close-
ly follow each other when the simulation environment is 
not very complex, such as the first scenario. On the other 
hand, having more complex simulation environments (see 
the second scenario) resulted in little performance degra-
dation in terms of both fuel efficiency and total flight range 
due to sharp turning flights.

Table 4. Comparison of fuel and shortest-path optimization 
results for scenario 2

Method Number of 
stages

Number 
of vari-

ables

Fuel con-
sumption 

(kg)

Total range 
(km)

Fuel-
optimal 
paths

20 60 634.0 1,907.8
30 90 618.2 1,903.5
40 120 616.2 1,900.4
50 150 615.9 1,898.6

Shortest 
paths

20 60 696.9 1,876.1
30 90 662.6 1,871.7
40 120 648.2 1,870.2
50 150 647.4 1,869.4
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Figure 9. Optimal velocity profiles for two simulations with 
50 stages in scenario 2
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Figure 10. Optimal bank angle profiles for two simulations 
with 50 stages in scenario 2

erage optimal velocity range. The optimal velocity values 
along the trajectory for both cases are greater than stall 
speed, which depends on the weight of the aircraft, bank 
angle, air density, wing area, and maximum lift coefficient. 
Figure 9 also shows that the stall speed value reaches a 
peak around 5,000 sec because the aircraft has a higher 
weight and bank angle at the way-point B when compared 
to at the way-point C.

Figure 10 presents optimal bank angle profiles from 
the 50-stage minimized-fuel and minimized-range paths 
in scenario 2. The larger magnitude of the bank angle 
takes place around way-point B, about 5,000 sec on the 
shortest path. The decrease in the weight of the aircraft in-
creases the bank-angle boundary range with time, as seen 
in Figure 10. Compared to the total flight time, the aircraft 
can reach the coordinates of its final destination 220 sec 
earlier by following the shortest-range path.
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