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aerodynamic load produced due to flying are considered 
(Bhagat & Alyanak, 2014). The optimal coefficient of drag 
is evaluated through various operating conditions.

The model generated in CATIA is used for perform-
ing CFD analysis. The simulations are performed for the 
aerodynamic conditions to visualise the flow separation, 
adverse pressure gradient, and vortex formation during 
flying of UAAV. Using the ICEM tool, the geometry and 
the computational domains are meshed ten times larger 
than the model, which does not affect the boundaries’ flow 
conditions. The mesh independence test is conducted to 
ensure solution accuracy. The quality checks of orthogo-
nality and skewness are carried out for the meshed profile 
and they are found within the limit.

Figure 7 shows the comparison of simulation results 
of the velocity contour of UAAV for different AoA rang-
es from -5°, -8°, and -10° at a relative airspeed 8.3m/s 
(30 km/h). This comparative study reveals the influences 
of design in aerodynamic losses of conceptual models 11, 
12, and 13. The result shows that the loss of kinetic energy 
and the velocity drop due to recirculation of flow in the top 
and rear side of the UAAV increases the total drag compo-
nent. Figure 8 shows the effect of AoA on drag for various 
conceptual models, and it is observed that the CM 11 at 
approximately -5° AoA possesses minimal drag coefficient 
of 0.38 during the vehicle operating speed of 8.3 m/s.

The finite element analysis is performed to examine 
the strength and integrity of UAAV. The axial load of 
thrust force for maximum take-off weight (MTOW) is 
given at the arm structure’s tip. The simulated results of 
static analysis of conceptual models 11, 12, and 13 shown 
in Figure 9 is used to understand the stress acting on the 
airframe and determine the maximum displacement of 
structure for the applied load.

Based on the CAE analysis, the aerodynamics charac-
teristics, and structural components’ rigidity with minimal 
deformation, CM 11 is chosen for further processing. The 
overall design score, including all other aspects, is infused 
to select CM 11 as the optimal design.

Comparison 
of velocity 
contour

–5° AoA in 
symmetry 

plane

–8° AoA in 
symmetry 

plane

–10°AoA in 
symmetry 

plane

Figure 7. Comparison of velocity contour in the symmetry plane at a relative airspeed of 8.3 m/s
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Figure 8. Drag coefficient vs Pitch angle comparison of 
conceptual models

3.5. Prototype

The industrial design process followed in the present work 
urges to clarify the selected model’s engineering aspects, 
which are not for evaluating the selected design rather 
than demonstrating the functionality of UAAV. The pro-
totype (CM 11) is built with four motors and other aspect 
of UAAV through combining hovercraft with central duct 
system is made with available components. In general, the 
co-axial configuration is preferred for making the UAV in 
a compact size to carry more payload. In this work, we 
have demonstrated with four motors. The modification of 
propulsion system from eight motors to four motors may 
not affect the performance characteristics of UAAV.

3.5.1. Fabrication
The fabrication of UAAV is split into the development of 
hovercraft and multi-rotor system. The skirt is the ma-
jor component in hovercraft, which produces the cush-
ioning effect for lifting the vehicle. Based on the types 
of operation in rough and smooth water, the selection 
of skirt type varies. A bag skirt with a plenum chamber 
design is chosen as a skirt for regular operations in still 
water in this work. The design of the skirt requires skill 
of curtailing and sewing. The tailored skirt is attached to 



48 S. Ganesan et al. Design conception and evaluation of an unmanned amphibious aerial vehicle using systematic...

the hull’s bottom surface, and the air exit holes are inci-
sion into it for creating cushion pressure underneath of 
skirt. Th e plenum is constructed with polystyrene foam 
by providing air passage and buoyant chambers. It acts as 
a support to distribute the load between the hull’s top and 
bottom surfaces. Th e electric duct fan is used to produce 
the airfl ow inside the skirt, which is attached to the hull’s 
top surface, and the connections are made to control the 
speed of fan for the desired power requirements. Th e hol-
low channels of aluminium are used for the construction 
of load-carrying members of the multi-rotor system. Th e 
vertical column and horizontal arm are the primary ele-
ments in a multi-rotor system, and the lift ing motors are 
attached at the outermost edges of the horizontal arm. Th e 
subsystems such as fl ight controllers, actuators, batteries, 
navigation systems, and communication devices are po-
sitioned appropriately on the UAAV structure to balance 
the centre of gravity.

3.5.2. Testing
As proof of concept, testing is performed to evaluate the 
design attributes and demonstrate the capability of UAAV 
in aerial fl ying and hovering mode in water. Th e integrated 
vehicle’s outdoor fl ight test is tested on light breeze wind 
conditions of 2.8 m/s NE at our university. Th e static test 
of hovering and dynamic test of gliding on land at indoor 
conditions are carried out at our university, and the same 

on the water surface for an altitude of 5 m and 10 m are 
tested at water pool in the absence of atmospheric distur-
bances as shown in Figure 10. Th e test results show the 
UAAV possesses good stability in nature for both aerial 
and water operations.

Conclusions

A systematic design approach incorporating the SBD 
technique to gather data and morphological layout to 
satisfy the design requirements for designing a UAAV 
is well established. Pugh’s evaluation method concern-
ing various design criterions such as ease of relocating, 
manufacturability, payload accommodation, aesthetics, 
and simplicity resulted in the three best confi gurations, 
CM11, CM12, and CM13. Design evaluation is performed 
for these three UAAVs using CFD analysis. It is evident 
that CM 11 attained a minimum drag coeffi  cient of 0.38 
at approximately -5°AoA for the maximum operating 
speed of 8.3 m/s. FEA studies suggested that Aluminium 
material has achieved minimum deformation and stress. 
Th e multirotor and hovercraft  systems are integrated, and 
various electronic modules are assembled. Th e developed 
prototype of UAAV is tested for its stability in air and wa-
ter-borne modes. Th e dynamic stability of UAAV in air, 
above ground level of 5 m and 10 m is achieved good sta-
ble fl ight. Th e static stability of UAAV in the longitudinal 

Figure 10. An experimental test of UAAV in aerial mode and hovering in the water

Figure 9. Deformation plot and stress contour of amphibious structures – CM 11, CM 12 and CM 13
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and transverse direction is controlled effectively in both 
land and water. The developed UAAV can be well suited 
for collecting water samples and inspection remote water 
bodies using onboard in-situ water quality sensors. It is 
concluded that the proposed design methodology is suit-
able for designing UAAV for diverse applications in the 
designated missions. This research work provides an idea 
for the researchers to address the challenges of unconven-
tional product design systematically. In future, the devel-
oped systematic approach can be well exploited to design 
a novel UAV for diverse applications.
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Appendix
Table A1. Compatibility matrix of design variables

Compatibility Matrix
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Ellipse 1.0 0.0 0.0 0.0 0.0 0.5 0.5 1.0 1.0 0.0 1.0 0.0 0.5 1.0 1.0 0.5
Square 0.0 1.0 0.0 0.0 0.0 0.5 1.0 0.0 0.5 1.0 1.0 0.0 1.0 1.0 0.5 0.0
Box 0.0 0.0 1.0 0.0 0.0 0.5 1.0 0.0 0.5 1.0 1.0 1.0 0.0 0.5 1.0 1.0
Rectangular 0.0 0.0 0.0 1.0 0.0 0.5 1.0 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0 0.0
Circular 0.0 0.0 0.0 0.0 1.0 0.5 0.5 0.5 0.5 0.0 1.0 0.0 1.0 1.0 0.0 0.5

Sk
irt

 T
yp

e

Open 0.5 0.5 0.5 0.5 0.5 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
Bag 0.5 1.0 1.0 1.0 0.5 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0
Finger 1.0 0.0 0.0 0.0 0.5 0.0 0.0 1.0 0.0 0.0 0.5 1.0 0.0 0.0 0.0 0.0
Segmented 1.0 0.5 0.5 0.5 0.5 0.0 0.0 0.0 1.0 0.0 0.5 1.0 0.0 0.0 0.0 0.0
Pericell 0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 1.0 0.0 0.0 0.0 0.0

Li
ft 
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s. Axial 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 1.0 0.0 0.0 0.0 0.0 0.0

Centrifugal 0.0 0.0 1.0 0.5 0.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0
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pe Quad + 0.5 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
Quad X 1.0 1.0 0.5 0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
Quad H 1.0 0.5 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Quad V 0.5 0.0 1.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Note: 1.0 – highly consist; 0.5 – partially consist; 0.0 – in-consist.

Table A2. Concept generation matrix of models
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l
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xi

al
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en
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ifu

ga
l

Q
ua

d 
+

Q
ua

d 
X

Q
ua

d 
H

Q
ua

d 
V

C
on

ce
pt

ua
l M

od
el

s

CM 1 x x x 1.0 x 0.5 x x x x 1.0 x X x 1.0 x 3.5
CM 2 1.0 x x x x 0.5 x x x x 1.0 x X x 1.0 x 3.5
CM 3 x x x 1.0 x 0.5 x x x x 1.0 x X 0.5 x x 3.0
CM 4 x x x x 1.0 0.5 x x x x 1.0 x 1.0 x x x 3.5
CM 5 1.0 x x x x 0.5 x x x x 1.0 x X x 1.0 x 3.5
CM 6 x x x 1.0 x 0.5 x x x x 1.0 x X x 1.0 x 3.5
CM 7 x x x 1.0 x 0.5 x x x x x 0.5 X x 1.0 x 3.0
CM 8 x x 1.0 x x 0.5 x x x x 1.0 x X x 1.0 x 3.5
CM 9 x x x 1.0 x 0.5 x x x x 1.0 x X 0.5 x x 3.0
CM 10 x x x 1.0 x 0.5 x x x x 1.0 x X x 1.0 x 3.5
CM 11 x x x 1.0 x x 1.0 x x x 1.0 x X x 1.0 x 4.0
CM 12 x x x 1.0 x x 1.0 x x x 1.0 x X x 1.0 x 4.0
CM 13 x 1.0 x x x x 1.0 x x x 1.0 x X x 0.5 x 3.5

Note: x – not applicable; scores (0.5–1.0) – values from compatibility matrix.
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Table A3. Design specifications of conceptual models

Design Specification
Conceptual Models

CM 1 CM 2 CM 3 CM 4 CM 5 CM 6 CM 7 CM 8 CM 9 CM 10 CM 11 CM 12 CM 13

Hovercraft Length (m) 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7
Width (m) 0.5 0.5 0.5 NA 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Height (m) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
No. of ducts 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0

Multi-rotor Arm Length (m) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2
Height (m) 0.2 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.3
No. of Motors 4.0 4.0 4.0 4.0 4.0 8.0 4.0 8.0 8.0 8.0 8.0 8.0 4.0

Table A4. Design criterion and evaluation factors

Criterion Evaluation Factors

Satisfying Mission The model should be able to accomplish mission objectives.
Vehicle design should be compatible with land and aerial missions.

Ease of Relocating Minimum skills are required to assemble, disassemble, and re-assemble as its mounting differs 
from mission to mission.
Should be easily transportable

Manufacturability Minimum manufacturing processes should be used.
Manufacturing techniques used should be cost-efficient.

Payload Accommodation Sufficient space should be provided to accommodate different payload for multi-mission

Aesthetics Components should be fairly assembled to provide an excellent appearance to the vehicle.

Maintenance Components and systems should be repairable.
No frequent maintenance should be required, and the maintenance cost should be nominal.

Simplicity The design should be easily understandable, with no complex connections.
Fewer components should be used.

Table A5. Design selections of conceptual models by Pugh’s method

Conceptual Models CM - 1 CM - 2 CM - 3 CM - 4 CM - 5 CM - 6 CM - 7 CM - 8 CM - 9 CM -10 CM -11 CM -12 CM -13

Factors Weightage Sc S Sc S Sc S Sc S Sc S Sc S Sc S Sc S Sc S Sc S Sc S Sc S Sc S

Satisfying 
Mission

10 2 20 2 20 2 20 1 10 2 20 2 20 3 30 4 40 2 20 4 40 5 50 5 50 5 50

Ease of 
Relocating

10 1 10 2 20 2 20 3 30 2 20 2 20 3 30 4 40 4 40 4 40 5 50 5 50 4 40

Manufac-
turability

9 3 27 3 27 3 27 4 36 3 27 4 36 3 27 3 27 3 27 3 27 4 36 4 36 4 36

Payload 
Accommo-
dation

9 1 9 2 18 1 9 1 9 2 18 2 18 2 18 3 27 2 18 3 27 4 36 4 36 5 45

Aesthetics 8 2 16 1 8 3 24 2 16 3 24 3 24 3 24 2 16 3 24 3 24 4 32 4 32 4 32
Mainte-
nance

7 3 21 2 14 2 14 3 21 3 21 3 21 3 21 3 21 3 21 3 21 4 28 3 21 4 28

Simplicity 7 1 7 3 21 2 14 3 21 3 21 3 21 2 14 3 21 2 14 3 21 4 28 3 21 4 28
Overall Score (300) 110 128 128 143 151 160 164 192 164 200 260 246 259
DR Satisfaction % 36.7 42.7 42.7 47.7 50.3 53.3 54.7 64.0 54.7 66.7 86.7 82.0 86.3

TOPSIS Score 0.174 0.280 0.271 0.310 0.359 0.371 0.438 0.607 0.442 0.645 0.897 0.843 0.869
TOPSIS Rank 13 11 12 10 9 8 7 5 6 4 1 3 2

Note: Weightage rated 1-10; score rated 1 (worst)-5 (Best), where: score – (Sc); Sum – (S).
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Table A6. Design parameters of UAAV

Parameter Empirical relation CM - 11 CM – 12 CM - 13

Length to width (l / w) 2 2 2
Bag pressure to cushion pressure (Pb / Pc) 1.3 1.3 1.3
Forward thrust to overall weight 
during hovering

(Tf / W) 0.2 0.2 0.2

Propeller pitch to diameter (p / d) 0.6 0.6 0.6
Vertical thrust to maximum take-
off weight

(Tv / W) 2 2 2

Maximum take-off weight (W) m × g 269.78 N 309.01 N 299.20 N
Length of the hovercraft (l) 2 × w 1.00 m 1.00 m 1.00 m
Cushion Area (Ac) l × w – pr2 0.40 m2 0.27 m2 0.49 m2

Cushion pressure (Pc)

c

W
A

674.44 N/m2 1144.5 N/m2 609.37 N/m2

Air escaping velocity (Ve)
2 cP
ρ

33.18 m/s 43.23 m/s 31.54 m/s

Air escaping area (Ae) ( )2 l w h× + × 0.038 m2 0.038 m2 0.038 m2

Airflow rate (Qe) Ae ×Ve 1.26 m3/s 1.64 m3/s 1.20 m3/s
Power required (Pe) 2 

2
e eQ V×ρ× 852.32 Watts 938.62 Watts 731.15 Watts

Required motor speed (N) 10

3
10

 0.0283495 
mL

p d g
×

× × ×

4200 rpm 4070 rpm 4070 rpm

Thrust per motor (T) 3 2 10    1 0 0.0283495 p d N g-× × × × × 150 N 147.1 N 147.1 N

Lift required for multi-copter (Lm) 2 × W 540 N 618 N N


