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Abstract. Missile homing precision depends mainly on the correct determination of the current angle between the Gyro-
scope System Axis (GSA) and the target line-of-sight (LOS). A gyroscope automatic control system shall ensure spontane-
ous levelling of this angle, hence, constant homing of the gyroscope system axis in on the LOS, i.e. tracking the target by 
the head. The available literature on the subject lacks a description of how to use the controlled gyro system in the process 
of guiding the missile onto the target. In this paper, the authors present the original development of an optimal control 
algorithm for a gyro system with a square quality indicator in conditions of interference and kinematic influence of the 
missile deck. A comparative analysis of the LQR with the PD regulator was made. PD regulator parameters are also selected 
optimally, using the Golubencev method, so that the transition process of the homing system fades over a minimal time, 
while simultaneously ensuring the overlapping of the gyroscope axis with the target line-of-sight. The computer simulation 
results have been obtained in a Matlab-Simulink environment and are presented in a graphic form.

Keywords: non-linear dynamics, gyroscope system, optimal regulator, guidance, missile flight.

Introduction

One of the most important air-air missile elements is the 
homing head. Homing heads utilizing infrared radiation 
are most commonly used. The head intercepts and tracks 
an air target. Missile homing involves, primarily, deter-
mining an engaged target line-of-sight  – a straight line 
from the homing head to the target (Balakrishnan et al., 
2013; Zarchan, 2012).

An optical target coordinator is the basic element of 
the head. A coordinator optical system is embedded in the 
gyroscope disc, suspended on the Cardan joint. The in-
flight task of a target coordinator is to determine the angle 
between the target line-of-sight (LOS) and the coordinator 
axis (gyroscope system axis-GSA) or its components or 
the angular velocities. This operation is automatic, so that 
the GS control system constantly directs the optical axis 
onto a moving target. When the gyroscope axis overlaps 
the target line-of-sight, the missile is deemed to track and 
follow the target. The sensors measure the angle between 
LOS and the missile axis and forward it to the autopilot. 
The autopilot, autonomously uses its own instrumentation 
to measure the angular position of the target axis rela-
tive to the Earth, and then determines control signals and 

forwards them to the control actuation system (Gapiński 
et al., 2018; Grzyb & Stefański, 2016).

Therefore, the accuracy of determining the actual angle 
between the GS axis and the LOS significantly impacts the 
precision of an air-air missile homing onto a manoeuvring 
air target, hence, it increases the efficiency of reaching and 
destroying the target (Gapinski & Krzysztofik, 2014). A 
gyroscope system is subject to the actions of the missile 
deck, which prevent long-term maintenance of a desired 
optical axis position with a specified accuracy. Thus, the 
control system parameters must be selected in an optimal 
manner so as to minimize the mean squared error and GS 
dynamic effects appearing within the transition process 
(Koruba & Krzysztofik, 2013; Krzysztofik et al., 2017).

Numerous researchers have studied the dynamics 
and control of a gyroscope system wherein a gyroscope 
was considered as a symmetrical solid body located on 
a vibrating support. The spatial position of a gyroscope 
was described using Euler angles, and the base vibrations 
adopted in the form of harmonics. Chaotic behaviours 
within the gyroscope system were mainly studied (Chen 
& Ge, 2005; Ge & Lee, 2005; Lei et al., 2005). Various algo-
rithms for controlling and synchronizing these behaviours 
were also developed. Diverse control methods, such as 
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fuzzy logic control (Sargolzaei et al., 2013), sliding mode 
control (Wang & Yau, 2011), fuzzy sliding mode control 
(Chen et al., 2013; Yau, 2008) and adaptive fuzzy sliding 
mode control (Roopaei et al., 2010) were also considered.

In contrast to the aforementioned papers, this arti-
cle is a study of the practical application of a gyroscope 
system suspended on a Cardan joint, as a homing head 
propulsion element. A system of such type is presented 
by Gapiński and Stefański (2014), Krzysztofik et al. (2017), 
Polo et al. (2008). Furthermore, Polo et al. (2008) devel-
oped a PID regulator and a procedure for determining 
its permissible parameters, while Krzysztofik et al. (2017) 
applied a fuzzy regulator, whereas Gapiński and Stefański 
(2014) implemented a control algorithm using phase tra-
jectories of control deviations.

This article discusses the most generic GS dynamics 
model. This is due to the fact that it has taken into ac-
count external forces, frame inertia and, most of all, the 
GS centre of gravity displacement relative to the rotation 
centre (a so-called “heavy” gyroscope). In addition, the 
paper concentrates on the control system for an axis of 
a gyroscope with a missile being its only support, which 
acts on the gyroscope bearings. Preliminary test reports 
involving the functioning of an LQR regulator onboard 
a missile were presented at the DSTA 2019 international 
conference.

The study involved developing an algorithm for the 
optimal control of a gyroscope system with a square qual-
ity indicator (minimum mean square error of GSA deflec-
tion from the target LOS) in conditions of interference in 
the form of the kinematic action of the missile deck. The 
gain matrices for an optimal regulator executing the de-
veloped algorithm were derived from the algebraic Riccati 

equation (after prior linearization of non-linear dynamic 
equations for the GS and expressing form in the form of 
equations of state). A block diagram of a gyroscope sys-
tem control system operating within the homing process 
is shown in Figure 1.

The diagram above shows four main blocks  – the 
homing air-to-air missile, autopilot, controlled gyroscope 
system and air target. A gyroscope system used within a 
homing head is a highly non-linear system. Therefore, let 
us first linearize the GS dynamics model and determine 
the state and control matrices. Next, the LQR method 
(equations 19) is used to determine the gain matrix, which 
is then sent to the input of the optimal regulator. The sec-
ond regulator input signal is comprised of control devia-
tions based on the current positions of the LOS and GSA. 
Ultimately, the determined optimum controls are sent to 
the input of a non-linear gyroscope system.

1. Governing equations and design of gyro system 
optimal control algorithm

A general view of a gyroscope system of a missile hom-
ing head, along with adopted coordinate systems is shown 
in Figure 2. Individual values mean: mO xyz  – coordinate 
system associated with the missile body; , ,m m mp q r





   – 
components of a missile angular velocity vector; mV



  – 
missile flight speed vector; 1 1 1gO x y z  – coordinate system 
associated with the outer frame of a gyroscope system; 

2 2 2gO x y z   – coordinate system associated with the in-
ner frame of a gyroscope system; 3 3 3gO x y z  – coordinate 
system associated with the rotor of a gyroscope system; 

, , ,g g gθ ψ Φ  – angles of inner frame rotation, outer frame 
rotation and specific rotation, respectively; ,b cU U
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tors of force moments acting upon the inner and outer 
frame, respectively. Defining the coordinate systems, an-
gular velocities and angles depicted in Figure 2 enable de-
riving the dynamic motion equations for the missile and 
gyroscope system that is reviewed later on in this paper.

A non-linear missile flight dynamics model has been 
derived using the Euler-Lagrange formalism. Equations 
describing the translational motion of a missile centre of 
gravity Om have been derived in a coordinate system as-
sociated with air streams (also called the speed or aero-
dynamic system) flowing around the missile and have the 
following form:

( ) ( ) ( )cos cos sin ,
x

m
m m m m m A

dV
m P m g F

dt
= α β − γ + ; (1)

( ) ( )sin cos ,
y

m
m m m m m A y

d
m V P m g F Q

dt
γ

= α − γ + + ; (2)

( ) ( ) ( )cos cos sin ,
z

m
m m m m m A z

d
m V P F Q

dt
χ

− γ = − α β + +  

(3)
where: mV  – missile velocity; mm – missile mass; mχ  – 
flight trajectory yaw angle; mγ   – flight trajectory pitch 
angle; mα  – angle of attack; mβ  – angle of slip;  P – mis-
sile engine thrust; g – gravitational acceleration;  FAx , FAy , 

FAz – aerodynamic action force; yQ  – vertical plane con-
trol force; zQ  – horizontal plane control force.

The equations describing the rotational motion of a 
missile around its centre of gravity Om have been derived 
in a coordinate system associated with the missile body, 
and have the following form:

( )  ,
x y z x

m
m m m m m A

dp
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dt
= − + ; (4)
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I I I q p M M

dt
= − + +  (6)

where: , ,
x y zm m mI I I   – missile moments of inertia rela-

tive to axis x, y and z, respectively; , ,m m mp q r  – angular 
velocities of the missile – tilt, yaw and pitch velocity, re-
spectively; , ,

x y zA A AM M M  – moments of aerodynamic 

forces; ,
y zQ QM M   – moments of missile flight control 

forces.
The position of the missile and target relative to each 

other is determined by the following kinematic relation-
ships (Krzysztofik & Koruba, 2014):

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
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where: ξ – distance between the missile and target; LOSγ  – 
LOS pitch angle; LOSχ  – LOS yaw angle; tV  – target ve-
locity; ,t tχ γ  – target velocity vector yaw and pitch angles.

Homing of a missile in on a target followed a propor-
tional navigation algorithm:

1 2, ,m g m ga aγ = θ χ = ψ

    (10)

where: 1 2,a a  – guidance constants; gθ  and gψ  – angular 
velocities derived from the equations below.

Just like in the case of missile equations, the Euler-
Lagrange was also used to derive a complete, non-linear 
motion dynamics model for a gyroscope system onboard 
a missile:

( ) ( )2 2
2 3 2 3 2 2 2

3 3 2 2 2 2 2
,

gy gz
gy gy g g gz gz gx gx gz

gx gx gz g g gy gx gx gy b bf

d dV
J J m l J J J

dt dt
J m l V V V U U

ω
+ − − + − ω ω +

 ω ω − ω − = − 

 (11)

Figure 2. General view of a gyroscope system of a missile 
homing head
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where:

1
cos singx m g m gp qω = ψ + ψ ;

1
sin cosgy m g m gp qω = − ψ + ψ ;

1gz g mrω = ψ + ;

2 1 1
cos singx gx g gz gω = ω θ −ω θ ;

2 1gy gy gω = ω + θ ;

2 1 1
sin cosgz gx g gz gω = ω θ +ω θ ;

3 2gx gx gnω = ω + ;

1
cosgx m gV V= ψ ;

1
singy m gV V= − ψ ;

2 1 1
cos singx gx g g gy gV V l= θ + ω θ ;

( )2 1 1 2
sin singy gx g g gy g gyV V l= θ − ω θ +ω

and , ,g g gψ θ Φ  – angles defining the GS rotor spatial po-
sition; 

1 1 1
, ,gx gy gzJ J J  – GS outer frame moments of inertia;

2 2 2
, ,gx gy gzJ J J   – GS inner frame moments of inertia; 

3 3 3
, ,gx gy gzJ J J   – GS rotor moment of inertia; gn   – GS 

rotor specific rotation speed; gm   – system mass: inner 
frame – rotor; gl  – distance of the rotor-inner frame sys-
tem centre of gravity from the centre of rotation; ,b cU U  – 
control moments; ,bf cfU U  – moment of friction forces in 
the bearings of the inner and outer frames, respectively.

The research adopted viscous-type friction, therefore 
the moments bfU  and cfU  are determined by the rela-
tionships:

, ,bf b g cf c gU U= η θ = η ψ

  (13)

where: ,b cη η  – attenuation factors in gyro frame suspen-
sion bearings.

A diagram covering the determination of optimal con-
trols for a gyroscope system of an anti-aircraft air-air mis-
sile homing head is shown in Figure 3.

A linearized model of a controlled gyroscope system 
shall, therefore, be expressed in both vector and matrix 
forms:

,
d

dt
= −g

g g g g
x

A x B u  (14)

where: gx   – vector of state, gA – matrix of state, gB – 
control matrix, gu – control vector, with the following 
components:

g

g

g

g

θ 
 
θ 

=  ψ 
 ψ 

gx




, 

0 1 0 0
0 / 0 /
0 0 0 1
0 / 0 /

b gk go g gk

go g gk c gk

J J n J

J n J J

 
 −η − =  
 

−η  

gA ,

Controlled Gyroscope 

System

Regulator LQR

Gain matrix Kg

ug = ―Kg ∙ eg

Air target

LOS

rmpm qm

Control errors eg

�g

�g
�LOS

�LOS

Homing 

air-to-air missile

 
 Figure 3. Diagram for the determination of optimal controls



Aviation, 2021, 25(1): 41–49 45
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where: ,go gkJ J  – moment of inertia of a GS rotor relative 
to the longitudinal and transverse axes, respectively.

Let a square quality indicator be known, with the fol-
lowing form (Lewis et al., 2012):

( )
0

 ,J dt
∞

= +∫ T T
g g g g g gx Q x u R u  (15)

where: ,g gQ R  – weight matrices selected via experiments.
The control law shall be expressed as follows:

,= −g g gu K e  (16)

where: ( )= −g g gde x x  – control errors; 

T
LOS LOS LOS LOS = γ γ χ χ gdx     – vector of desired 

state variables, with the components derived from Equa-
tions (7)–(9).

The feedback matrix gK  is determined based on the 
following relationship:

 .−= 1 T
g g g gK R B P  (17)

For the purposes of the paper, the matrix gK
 
has been 

determined using the lqr (Tewari, 2002) Matlab function:

( ), , ,  .lqr=g g g g gK A B Q R  (18)

The matrix gP  present in the equation is derived from the 
algebraic Riccati equation:

0.−+ − + =T 1 T
g g g g g g g g g gA P P A P B R B P Q  (19)

2. Numerical simulation results

This section presents the results of simulation tests con-
ducted in order to evaluate the LQR designed for con-
trolling a gyroscope system during the process of hom-
ing an air-air missile in on a manoeuvring air target. The 
numerical simulations were performed using the Matlab/
Simulink software, utilizing the procedure ode45, with a 
variable integration step (Baranowski, 2013), for the fol-
lowing parameters:

Target and missile initial parameters

1500 mtX = ; 500 mtY = ; 350 mtZ = ; 200 m/stV = ;

0.0 radtγ = ; 0.0 radtχ = ; 0.15 rad/stΩ = ;

1000 mmX = ; 500 mmY = ; 100 mmZ = ; 50 m/smV = .
Guidance constants

1 2 3.5a a= = .
Gyroscope system parameters

4 25 10  kgmgoJ −= ⋅ ; 4 22.5 10  kgmgkJ −= ⋅ ;

600 rad/sgn = ; 0.01 Nm/sb cη = η = .

LQR parameters (weight matrices)

200 0 0 0
0 100 0 0
0 0 10 0
0 0 0 100

 
 
 =  
 
  

gQ ; 
5 0
0 5
 

=  
 

gR .

The operation of an LQR was compared with the opera-
tion of a PD regulator, the coefficients of which have been 
selected optimally so as not to exceed permissible control 
values during the manoeuvring and to obtain a lower tar-
get function value. This was the reason why the study uti-
lized the optimization algorithm reviewed by Awrejcewicz 
and Koruba (2012):

( ) ( ) ( )b b g LOS c g LOS g g LOSU k k h= − θ − γ + ψ −χ − θ − γ

 ,

( ) ( ) ( )c c g LOS b g LOS g g LOSU k k h= − θ − γ − ψ −χ − ψ −χ  ,

2.5bk = ; 3.46ck = ; 1.73gh = .
Figures 4–13 show selected simulation test results. 

Figure 4 reveals a missile intercepting a manoeuvring air 
target after 5.3 s. Figures 5 and 6 demonstrate good con-
vergence of the desired and executed flight angles. In the 
case of using an LQR for controlling a GS, fast and ef-
fective overlapping of the gyroscope axis and the target 
line-of-sight can also be noticed – Figures 7, 10 and 11. 
There are only slight deviations of the gyroscope system 
axis path from the set value in the initial phase of homing 
a missile on a target (Figure 8).

The operational efficiency of an LQR was also assessed 
for a scenario in which a missile is impacted by high-
amplitude harmonic kinematic forces over a short time 
interval. These forces, converging through the gyroscope 
frame bearings, adversely impact the stabilization of a GS 
axis along the target LOS. In Figures 10 and 11, it is seen 
that the control system, together with the LQR regulator, 
rapidly restores the GS axis to a desired position. This is 
also confirmed by the results in Figure 12. After the dis-
turbance passes, the actual and set gyroscope axis path 
fully coincide.

The presented research results indicate that optimal 
regulator parameters enable the constant up-keep of a sta-
ble target in the line of sight of the homing head optical 
system (Figures 7a, 10a and 11a). This can be of significant 

Figure 4. Missile and target flight trajectories
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a) b)

Figure 5. Actual mγ  and desired mdγ  missile flight angles over time, for: a) LQR, b) PD regulator

a) b)

Figure 6. Actual mχ  and desired mdχ  missile flight angles over time, for: a) LQR, b) PD regulator

a) b)
Figure 7. Pitch and yaw angles for LOS and gyroscope system axis over time, for: a) LQR, b) PD regulator

a) b)
Figure 8. Actual and desired gyroscope system trajectories, for: a) LQR, b) PD regulator
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a) b)

Figure 9. Control moments over time, for: a) LQR, b) PD regulator

a) b)
Figure 10. Pitch angle for LOS and gyroscope system axis, for: a) LQR, b) PD regulator

a) b)
Figure 11. Yaw angle for LOS and gyroscope system axis, for: a) LQR, b) PD regulator

a) b)
Figure 12. Actual and desired gyroscope system axis trajectories, for: a) LQR, b) PD regulator



48 I. Krzysztofik, Z. Koruba. Application of an optimal control algorithm for a gyroscope system of a homing...

importance when a target is detected with high angular 
deflection with respect to the missile’s longitudinal axis 
relative to the target line of sight.

It should be stressed that the control moments adopt 
minor values (Figures 9a and 13a) that determine their 
feasibility in the conditions of an actual homing process. 
The operation of an optimal regulator for a gyroscope sys-
tem is also stable under the impact of large interference by 
the missile deck (Figure 12a).

Disclosure statement

The authors do not have any competing financial, profes-
sional, or personal interests from other parties.

Conclusions

The obtained tests results indicate the correctness of the 
original operation developed by the authors of the con-
trol algorithm for a gyroscope in a homing missile. The 
outcome of the tests presented in the research paper also 
demonstrate the high efficiency of the optimal control 
algorithm in controlling a gyroscope system within the 
process of homing an air to air missile on a manoeuvring 
air target. Furthermore, the conducted comparative anal-
ysis showed that an LQR ensured higher homing preci-
sions of a missile on a manoeuvring air target, relative 
to a PD regulator, despite the fact that the parameters of 
the latter were selected in an optimal manner, following 
the Golubencev method. This can be clearly seen in the 
conditions of active strong external interference. This is 
of significant importance in terms of the homing process, 
since it determines in many cases effective anti-aircraft 
defence.

The future research of the authors will focus on includ-
ing the non-stationarity of a guidance system (time-varia-
ble state matrix components) and the implementation of a 
developed controlled algorithm within an actual homing 
missile, as well as its verification in field conditions.
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Notations

Variables and functions
, ,t t tX Y Z  – target position coordinates;
, ,m m mX Y Z  – missile position coordinates;
, ,md md mdX Y Z  – desired position coordinates of missile;

,m mdγ γ  – actual and desired pitch angles of missile veloc-
ity vector, respectively;

,m mdχ χ  – actual and desired yaw angles of missile veloc-
ity vector, respectively;

LOSγ  – LOS pitch angle;
LOSχ  – LOS yaw angle;
gψ  – the rotation angle of the outer frame of the gyro-

scope system;
gθ  – the rotation angle of the inner frame of the gyro-

scope system;
,b cU U  – control moments.
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