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Abstract. Missile homing precision depends mainly on the correct determination of the current angle between the Gyro-
scope System Axis (GSA) and the target line-of-sight (LOS). A gyroscope automatic control system shall ensure spontane-
ous levelling of this angle, hence, constant homing of the gyroscope system axis in on the LOS, i.e. tracking the target by
the head. The available literature on the subject lacks a description of how to use the controlled gyro system in the process
of guiding the missile onto the target. In this paper, the authors present the original development of an optimal control
algorithm for a gyro system with a square quality indicator in conditions of interference and kinematic influence of the
missile deck. A comparative analysis of the LQR with the PD regulator was made. PD regulator parameters are also selected
optimally, using the Golubencev method, so that the transition process of the homing system fades over a minimal time,
while simultaneously ensuring the overlapping of the gyroscope axis with the target line-of-sight. The computer simulation
results have been obtained in a Matlab-Simulink environment and are presented in a graphic form.
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Introduction

One of the most important air-air missile elements is the
homing head. Homing heads utilizing infrared radiation
are most commonly used. The head intercepts and tracks
an air target. Missile homing involves, primarily, deter-
mining an engaged target line-of-sight — a straight line
from the homing head to the target (Balakrishnan et al.,
2013; Zarchan, 2012).

An optical target coordinator is the basic element of
the head. A coordinator optical system is embedded in the
gyroscope disc, suspended on the Cardan joint. The in-
flight task of a target coordinator is to determine the angle
between the target line-of-sight (LOS) and the coordinator
axis (gyroscope system axis-GSA) or its components or
the angular velocities. This operation is automatic, so that
the GS control system constantly directs the optical axis
onto a moving target. When the gyroscope axis overlaps
the target line-of-sight, the missile is deemed to track and
follow the target. The sensors measure the angle between
LOS and the missile axis and forward it to the autopilot.
The autopilot, autonomously uses its own instrumentation
to measure the angular position of the target axis rela-
tive to the Earth, and then determines control signals and

forwards them to the control actuation system (Gapinski
et al., 2018; Grzyb & Stefanski, 2016).

Therefore, the accuracy of determining the actual angle
between the GS axis and the LOS significantly impacts the
precision of an air-air missile homing onto a manoeuvring
air target, hence, it increases the efficiency of reaching and
destroying the target (Gapinski & Krzysztofik, 2014). A
gyroscope system is subject to the actions of the missile
deck, which prevent long-term maintenance of a desired
optical axis position with a specified accuracy. Thus, the
control system parameters must be selected in an optimal
manner so as to minimize the mean squared error and GS
dynamic effects appearing within the transition process
(Koruba & Krzysztofik, 2013; Krzysztofik et al., 2017).

Numerous researchers have studied the dynamics
and control of a gyroscope system wherein a gyroscope
was considered as a symmetrical solid body located on
a vibrating support. The spatial position of a gyroscope
was described using Euler angles, and the base vibrations
adopted in the form of harmonics. Chaotic behaviours
within the gyroscope system were mainly studied (Chen
& Ge, 2005; Ge & Lee, 2005; Lei et al.,, 2005). Various algo-
rithms for controlling and synchronizing these behaviours
were also developed. Diverse control methods, such as
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fuzzy logic control (Sargolzaei et al., 2013), sliding mode
control (Wang & Yau, 2011), fuzzy sliding mode control
(Chen et al., 2013; Yau, 2008) and adaptive fuzzy sliding
mode control (Roopaei et al., 2010) were also considered.

In contrast to the aforementioned papers, this arti-
cle is a study of the practical application of a gyroscope
system suspended on a Cardan joint, as a homing head
propulsion element. A system of such type is presented
by Gapinski and Stefaniski (2014), Krzysztofik et al. (2017),
Polo et al. (2008). Furthermore, Polo et al. (2008) devel-
oped a PID regulator and a procedure for determining
its permissible parameters, while Krzysztofik et al. (2017)
applied a fuzzy regulator, whereas Gapinski and Stefanski
(2014) implemented a control algorithm using phase tra-
jectories of control deviations.

This article discusses the most generic GS dynamics
model. This is due to the fact that it has taken into ac-
count external forces, frame inertia and, most of all, the
GS centre of gravity displacement relative to the rotation
centre (a so-called “heavy” gyroscope). In addition, the
paper concentrates on the control system for an axis of
a gyroscope with a missile being its only support, which
acts on the gyroscope bearings. Preliminary test reports
involving the functioning of an LQR regulator onboard
a missile were presented at the DSTA 2019 international
conference.

The study involved developing an algorithm for the
optimal control of a gyroscope system with a square qual-
ity indicator (minimum mean square error of GSA deflec-
tion from the target LOS) in conditions of interference in
the form of the kinematic action of the missile deck. The
gain matrices for an optimal regulator executing the de-
veloped algorithm were derived from the algebraic Riccati
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equation (after prior linearization of non-linear dynamic
equations for the GS and expressing form in the form of
equations of state). A block diagram of a gyroscope sys-
tem control system operating within the homing process
is shown in Figure 1.

The diagram above shows four main blocks - the
homing air-to-air missile, autopilot, controlled gyroscope
system and air target. A gyroscope system used within a
homing head is a highly non-linear system. Therefore, let
us first linearize the GS dynamics model and determine
the state and control matrices. Next, the LQR method
(equations 19) is used to determine the gain matrix, which
is then sent to the input of the optimal regulator. The sec-
ond regulator input signal is comprised of control devia-
tions based on the current positions of the LOS and GSA.
Ultimately, the determined optimum controls are sent to
the input of a non-linear gyroscope system.

1. Governing equations and design of gyro system
optimal control algorithm

A general view of a gyroscope system of a missile hom-
ing head, along with adopted coordinate systems is shown
in Figure 2. Individual values mean: O, xyz — coordinate
system associated with the missile body; p,,,d,7y

components of a missile angular velocity vector; \7m -
missile flight speed vector; O, x,y,z; - coordinate system
associated with the outer frame of a gyroscope system;
O,%,9,2, - coordinate system associated with the in-
ner frame of a gyroscope system; O, x;y;2z; — coordinate
system associated with the rotor ofg a gyroscope system;
0,,y,,@,, - angles of inner frame rotation, outer frame

rotation and specific rotation, respectively; U,,U, - vec-

air-to-air missile

Autopilot

kinematic
¥ excitations
C"mr"lé‘;‘iggf"“"pe > GSA | LOS > Air target

y

Nonlinear model

linearization
A

Linear model

y
Matrix of state and
control

y
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Optimal
controller

y

Optimal control

Figure 1. Block diagram of a gyroscope system control system operation
within the homing process
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Figure 2. General view of a gyroscope system of a missile
homing head

tors of force moments acting upon the inner and outer
frame, respectively. Defining the coordinate systems, an-
gular velocities and angles depicted in Figure 2 enable de-
riving the dynamic motion equations for the missile and
gyroscope system that is reviewed later on in this paper.

A non-linear missile flight dynamics model has been
derived using the Euler-Lagrange formalism. Equations
describing the translational motion of a missile centre of
gravity O,, have been derived in a coordinate system as-
sociated with air streams (also called the speed or aero-
dynamic system) flowing around the missile and have the
following form:

av,
mmd—;ﬂZ PcoS((Xm >COS(BM)_mmgSin(Ym)+FAX; (1)

d
mmeL;”:Psin(ocm)—mmgcos(ym)+FAy+Qy; (2)
on _ .
~m,,V;y 08(7,, )7— —Pcos(am)s1n(Bm)+FAZ +Q,,

3)
where: V, - missile velocity; m,, — missile mass; y,, —
flight trajectory yaw angle; y,, - flight trajectory pitch
angle; a,,, - angle of attack; B,, - angle of slip; P - mis-
sile engine thrust; g - gravitational acceleration; Fy,, Fy,,
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F,, — aerodynamic action force; Q, - vertical plane con-
trol force; Q, - horizontal plane control force.

The equations describing the rotational motion of a
missile around its centre of gravity O,, have been derived
in a coordinate system associated with the missile body,
and have the following form:

dap
Imxd—;":(lmy _ImZ)erm+MAx; 4)
dq,,
myTZ(ImZ _Imx) rmpm+MAy +MQy; (5)
dr,
where: I, ,I ,I, - missile moments of inertia rela-
X y z

tive to axis x, y and z, respectively; p,,.q,,,%,, — angular

velocities of the missile - tilt, yaw and pitch velocity, re-

spectively; M, ,M, ,M, - moments of aerodynamic
X y z

forces; MQ ,MQ - moments of missile flight control
y z

forces.

The position of the missile and target relative to each
other is determined by the following kinematic relation-
ships (Krzysztofik & Koruba, 2014):

d

d—fz Vi [cos(yt )cos(yLOS)cos(xLOS —Xt)+sin(yt )sin(yLOS )]—

V., [cos(ym )cos(yLOS )COS(XLos A ) + sin(ym )sin(yLOS )J,
)

d
e 2105 — vy, [cos(v, )sin(1,0s ) c0s(tr0s ~ 1 ) =sin(v, )cos(v10s ) |+

dt
Vin [cos(ym)sin(yLOS)cos(xLos 7xm)fsin(ym)cos(yws )J,
®)
dY10s
s dt
V., cos(ym )Sin<XLos Yo ),

CosYros = V; cos(yt)sin<XLos _Xt)_ )

where: £ - distance between the missile and target; v; ¢ -
LOS pitch angle; ;g — LOS yaw angle; V, - target ve-
locity; x,,y, — target velocity vector yaw and pitch angles.

Homing of a missile in on a target followed a propor-
tional navigation algorithm:

T = @005 X =02V g (10)
where: a;,a, - guidance constants; 0 and s ¢ —angular
velocities derived from the equations below.

Just like in the case of missile equations, the Euler-
Lagrange was also used to derive a complete, non-linear
motion dynamics model for a gyroscope system onboard
a missile:

do av,
\"Tn 8% _( _ )
(] o o) at mglg dt ooy gey =T gx, | P, Oz, +

g, @gx, Oz, ~ Mgl [ngz Dge, ~Ver, Ve, } =Up =Uss»

(11)
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; do -

& g + (]gzz g )%((Dgzz coseg ) T g, %(mgxz sineg),
]gx3 %((Dgxs Sineg)+ mglg %[ngz (1+ coseg ):| —

(]gxl _]gyl )mgxlmgyl _(]gzz +]gz3 )O)gZZ(Dgyl sineg +

(]gyl o )(Dgyzmg"l 7(] 5 P, e, Vg, )mgxl cosBy -

m.V [V

Vg, | Vey 0805 — 1,00, sinBy J MgV, [_Vgxl +lgog, sin, } -

meVee, [ngl sin@, +1 @, (1+coseg )} =U Uy,

(12)
where:
Ogr, =P COSV, +qy, siny 5
gy =Py SINY ¢ +4,, COSY 5

Ogey =Vg T

Wy, = O, COSO, —,, sinO, ;
0, =gy, +0g 3

Wy, =W siNO, +0,, cosb,;
Ogry = Dgry F1g5

Vo, =V COSY 5

Vg}'1 ==V, siny ¢

Vox, = Vor, €080, +1,0,, sin0O,;

ngz = Vgx1 sineg —lg ((Dgyl sineg +0g, )
and y,,0,,0, — angles defining the GS rotor spatial po-

sition; J o Ji o J g GS outer frame moments of inertia;

Homing
air-to-air missile

Pm (qm I'm
\ 4 Y A\
eg

]gx2 ,]gy2 ,]gz2 - GS inner frame morpen@ of inertia;
gt;2) gy 2) gz, — GS rotor moment of inertia; n, - GS
rotor specific rotation speed; m, - system mass: inner
frame - rotor; I, - distance of the rotor-inner frame sys-
tem centre of gravity from the centre of rotation; U,,U, -
control moments; Uy¢,Us - moment of friction forces in
the bearings of the inner and outer frames, respectively.

The research adopted viscous-type friction, therefore
the moments Uy, and U are determined by the rela-
tionships:

Ubf = nheg ’Ucf = nc\i/g)
where: m,,m, - attenuation factors in gyro frame suspen-
sion bearings.

A diagram covering the determination of optimal con-
trols for a gyroscope system of an anti-aircraft air-air mis-
sile homing head is shown in Figure 3.

A linearized model of a controlled gyroscope system
shall, therefore, be expressed in both vector and matrix
forms:

(13)

dxg
- =A.x, -B.u,, (14)
where: Xg - vector of state, A, — matrix of state, B_ -
control matrix, u, - control vector, with the following
components:
0, 0 1 0 0
< = eg _ 0 _nh/]gk 0 —]gol’lg/]gk
& |y g -] 0 0 1 ’
\ilg 0 ]gong/]gk 0 _nc/]gk

Air target

LOS

Controlled Gyroscope
System

Ve

Regulator LQR

Gain matrix K,

\

YLos

A Los

Qo

A

Y

Control errors e,

Figure 3. Diagram for the determination of optimal controls
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0 0
U]g 0 U,
= ,u = N
8 0 0 & U,
0 g

where: | 00 ] gk — moment of inertia of a GS rotor relative
to the longitudinal and transverse axes, respectively.

Let a square quality indicator be known, with the fol-
lowing form (Lewis et al., 2012):

J= T(nggxg +u§Rgug) dt, (15)
0

where: Q,,R, - weight matrices selected via experiments.
The control law shall be expressed as follows:

u, :—ngg, (16)

where: e, = (xg —xgd) — control errors;

Xgd :[yLOS Yros XLos XLos ]T - vector of desired
state variables, with the components derived from Equa-
tions (7)-(9).

The feedback matrix Kg is determined based on the
following relationship:

—R-IBT
K, =R;'BIP, . (17)
For the purposes of the paper, the matrix K, has been
determined using the Igr (Tewari, 2002) Matlab function:
K, =lqr(Ag,Bg,Qg,Rg) . (18)

The matrix P, present in the equation is derived from the
algebraic Riccati equation:

T _ -1RT —
Ag Pg +PgAg PngRg Bng —i—Qg =0. (19)

2. Numerical simulation results

This section presents the results of simulation tests con-
ducted in order to evaluate the LQR designed for con-
trolling a gyroscope system during the process of hom-
ing an air-air missile in on a manoeuvring air target. The
numerical simulations were performed using the Matlab/
Simulink software, utilizing the procedure ode45, with a
varijable integration step (Baranowski, 2013), for the fol-
lowing parameters:
Target and missile initial parameters

X, =1500m; Y, =500 m; Z, =350 m; V, =200 m/s;
Y, =0.0rad; x, =0.0 rad; ©, =0.15 rad/s;
X, =1000m; Y, =500m; Z, =100 m; V, =50 m/s.
Guidance constants
a,=a,=3.5.
Gyroscope system parameters

Jgo =5-107* kgm?; ] =2.5-107* kgm?;

ng =600 rad/s; n, =n, =0.01Nm/s.

45

LQR parameters (weight matrices)
200 0 0 O

0 100 0 0 50
= SR, = :
810 010 0| 8 |05

0 0 0 100

The operation of an LQR was compared with the opera-
tion of a PD regulator, the coefficients of which have been
selected optimally so as not to exceed permissible control
values during the manoeuvring and to obtain a lower tar-
get function value. This was the reason why the study uti-
lized the optimization algorithm reviewed by Awrejcewicz
and Koruba (2012):

Uy =k, (eg _YLos)+kc (‘I’g _XLOS>_hg(eg _YLOS)’
Uc z_kc(eg _YLOS)_kh(\Vg _XLOS)_hg (Wg _XLOS)’
ky =2.5; k, =346 h, =173.

Figures 4-13 show selected simulation test results.
Figure 4 reveals a missile intercepting a manoeuvring air
target after 5.3 s. Figures 5 and 6 demonstrate good con-
vergence of the desired and executed flight angles. In the
case of using an LQR for controlling a GS, fast and ef-
fective overlapping of the gyroscope axis and the target
line-of-sight can also be noticed - Figures 7, 10 and 11.
There are only slight deviations of the gyroscope system
axis path from the set value in the initial phase of homing
a missile on a target (Figure 8).

The operational efficiency of an LQR was also assessed
for a scenario in which a missile is impacted by high-
amplitude harmonic kinematic forces over a short time
interval. These forces, converging through the gyroscope
frame bearings, adversely impact the stabilization of a GS
axis along the target LOS. In Figures 10 and 11, it is seen
that the control system, together with the LQR regulator,
rapidly restores the GS axis to a desired position. This is
also confirmed by the results in Figure 12. After the dis-
turbance passes, the actual and set gyroscope axis path
tully coincide.

The presented research results indicate that optimal
regulator parameters enable the constant up-keep of a sta-
ble target in the line of sight of the homing head optical
system (Figures 7a, 10a and 11a). This can be of significant

real missile path
desired missile path
target path

Figure 4. Missile and target flight trajectories
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importance when a target is detected with high angular
deflection with respect to the missile’s longitudinal axis
relative to the target line of sight.

It should be stressed that the control moments adopt
minor values (Figures 9a and 13a) that determine their
feasibility in the conditions of an actual homing process.
The operation of an optimal regulator for a gyroscope sys-
tem is also stable under the impact of large interference by
the missile deck (Figure 12a).

Disclosure statement

The authors do not have any competing financial, profes-
sional, or personal interests from other parties.

Conclusions

The obtained tests results indicate the correctness of the
original operation developed by the authors of the con-
trol algorithm for a gyroscope in a homing missile. The
outcome of the tests presented in the research paper also
demonstrate the high efliciency of the optimal control
algorithm in controlling a gyroscope system within the
process of homing an air to air missile on a manoeuvring
air target. Furthermore, the conducted comparative anal-
ysis showed that an LQR ensured higher homing preci-
sions of a missile on a manoeuvring air target, relative
to a PD regulator, despite the fact that the parameters of
the latter were selected in an optimal manner, following
the Golubencev method. This can be clearly seen in the
conditions of active strong external interference. This is
of significant importance in terms of the homing process,
since it determines in many cases effective anti-aircraft
defence.

The future research of the authors will focus on includ-
ing the non-stationarity of a guidance system (time-varia-
ble state matrix components) and the implementation of a
developed controlled algorithm within an actual homing
missile, as well as its verification in field conditions.
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Notations

Variables and functions
X,,Y;,Z, - target position coordinates;

X,.,Y,,Z, - missile position coordinates;
Xd>Yma>Zma — desired position coordinates of missile;

Ym>Ymd — actual and desired pitch angles of missile veloc-
ity vector, respectively;

Ym>Xmd — actual and desired yaw angles of missile veloc-
ity vector, respectively;

Yros — LOS pitch angle;

Xros — LOS yaw angle;

Y, - the rotation angle of the outer frame of the gyro-
scope system;

0, - the rotation angle of the inner frame of the gyro-
scope system;

U,,U, - control moments.

Abbreviations

GSA - Gyroscope System Axis;

GS - Gyroscope System;

LOS - Line-of-Sight;

PID - Proportional-Integral-Derivative;
PD - Proportional-Derivative;

LQR - Linear-Quadratic Regulator.


https://doi.org/10.1177/1464419312455967
https://doi.org/10.1155/2014/934250
https://doi.org/10.1016/j.arcontrol.2016.10.003
https://doi.org/10.1016/j.physleta.2005.06.020
https://doi.org/10.1002/9781118122631
https://doi.org/10.1016/j.sysconle.2007.06.007
https://doi.org/10.1016/j.cnsns.2009.09.022
https://doi.org/10.1007/s11071-010-9910-4
https://doi.org/10.1016/j.ymssp.2007.08.007
https://doi.org/10.2514/4.868948

