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Introduction

During the last few decades, the use of rolling airframes 
is increased. The main benefit of rolling motion is over-
coming the effect of airframe asymmetries due to thrust 
or fins misalignment. One pair control surface with ON-
OFF actuator is one of the complicated configurations 
for analytical analysis. The advantage of using one pair 
control surface is to reduce airframe size, mass and price. 
In general, DC motor and ON-OFF actuators are used to 
move control surfaces. It is known that ON-OFF actuator 
is a non-linear element and an additional signal, which 
called linearity or dither signal, is used for linearization 
its output. In this paper the dynamic stability of a roll-
ing airframe with one pair of control surface actuated by 
ON-OFF actuator is addressed.

The equations of motion of rolling airframe in body-
fixed frame and in non-rolling frame are developed in 
literature (Nicolaides, 1953; Murphy, 1963, 1981, 1971; 
Cohen et al., 1974). Relying on these models, the stabil-
ity analysis of free flight motion and the effect of small 
asymmetries due to control surfaces deflections or fins 
misalignment is performed. Linear theory is mentioned 
in most of researches. In Vaughn (1968) and Eikens-
berry (1970) a detailed development of tricyclic theory 
is presented. Malmgrenproposed an approximate model 
for a rolling airframe having one pair control surface 

by averaging the force and moment equations in a non-
rolling frame over one roll revolution (Malmgren, 1999). 
Lestage developed a modified dynamic model for roll-
ing airframe with one-pair control surface and two-pair 
control surface (Lestage, 2000). He showed that the re-
sponse of airframe controlled by one-pair is nearly equal 
to the response of airframe controlled by two-pairs but 
with half control effectiveness and additional disturbance 
on the commanded value modulated at twice the roll-
ing frequency. The dynamic stability of rolling airframe 
actuated by DC motor is covered well in literature. For 
example, in Yan et al. (2010), the dynamic instability of 
rolling airframe caused by rate loop controller is stud-
ied and the suitable stability conditions are established. 
The effect of attitude and acceleration autopilots are dis-
cussed and the dynamic stability boundary is analytically 
derived (Yan et al., 2011; Li et al., 2012). The effects of 
DC motor actuator on the dynamic stability of rolling 
airframe is proposed in Zhou et al. (2013), Koohmaskan 
et  al. (2015). Then, the sufficient conditions related to 
actuator’s characteristics which keep the airframe in the 
safe region of dynamic stability are derived. A compari-
son between continuous and ON-OFF actuators is done 
by Koohmaskan et al. (2016). Nobahari et al. (2012) have 
utilized the multiple-input describing function tech-
nique for linearization the output of ON-OFF actuator. 
The performance of control and guidance system for a 
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spinning flight vehicle with dithering canard is studied 
in Mirzaei and Alishahi (2014).

The effect of one pair ON-OFF control surface on 
dynamic stability behavior of a rolling airframe is con-
centrated in the current research. In this regard, a new 
analytical relation is derived for ideal and real ON-OFF 
control surface. Based on the linear theory, new closed 
form solutions are derived for rolling airframe motion in 
presence of ON-OFF control surface model. According to 
the author’s knowledge, this is for the first time that such a 
formulation is proposed. Utilizing the new closed form so-
lution, actuator model effect on rolling airframe dynamic 
behavior is evaluated. The resonance phenomenon, due to 
actuator dynamic model, is studied. The effect of rolling 
airframe roll rate magnitude on angular motion is also 
studied. The proposed closed form solution is validated 
by comparing its results with that of a numerical solution.

The paper is organized as follows: in section 1, four 
degree of freedom (4-DOF) equations of motion in non-
rolling frame are proposed. In section 2 the analytical 
model for ideal and real actuator is illustrated. Section 3 
is devoted to rolling airframe motion closed form solution 
derivation in presence of one pair ON-OFF control sur-
face. Dynamic stability analysis based on proposed ana-
lytical solutions are performed in section 4. Validation of 
proposed closed form solutions are shown in section 5 
and conclusions are proposed in the last section.

1. Airframe equations of motion

Rolling airframe dynamic equations of motion are non-
linear six degree of freedom (Zipfel, 2007). However, 
because of dynamic behavior of rolling airframes, in a 
body fixed rolling frame, it can be assumed that x-com-
ponent of linear velocity in body frame (Vx) and roll rate 
(p) are constant. Hence, for stability analysis purposes, a 
linearized 4-DOF model including angle of attack (a), 
sideslip angle (b), pitch rate (q) and yaw rate (r) is suf-
ficient. Here, for canard-controlled rolling airframe with 
one pair control surface, it is assumed that that the y-
component of the rolling frame is along with the control 
surface. Therefore, the control surface is supposed to be 
an elevator in rolling frame. It is more convenient to study 
dynamic stability in non-rolling frame with state vector 

T
NR NR NR NR

=[ , ],q ,rb aX . The relation between states in roll-
ing and non-rolling frames is shown in Eq. (1).
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Here, ϕ is the angle between body-fixed rolling frame 
and non-rolling frame, as shown in Figure 1.

0
( )

t
t pdtϕ = ∫ ; (2)

State space form of 4-DOF dynamic equation in non-
rolling frame is written as follows (Mohammadi et  al., 
2016):
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.
Here, δ  is the applied ON-OFF control command in 
rolling frame. Constants m, I, S and d are airframe mass, 
moment of inertia, reference area and reference length, 
respectively. V is true air speed. Aerodynamic derivatives 

NC a and NC δ indicate variation of normal force with an-
gle of attack and control surface. mC a, mqC  and mC δ  are 
variation of pitching moment with angle of attack, pitch 
rate and elevator and finally, mpC a  is variation of pitching 
moment due to Magnus effect with angle of attack.

2. Analytical model for ON-OFF control surface

In current research, for stability analysis purpose, two 
mathematical models are used for the ON-OFF control 

Figure 1. Transformation from rolling frame {B} to  
non-rolling frame {NR}
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surface, namely ideal and real models. In real model, the 
actuator is assumed to be zero-lag and hence, its trans-
fer function is taken as 1. Real actuator is assumed to be 
single-lag with transfer function 1/ (1 )S+ τ . Here, τ is set 
to be 0.005 second. Time history of ideal and real models, 
during two periods, is shown in Figure 2 and Figure 3.

The ideal ON-OFF control surface input can be repre-
sented by the following relation:

( )
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where, j  = 1, 2, …, N and T is period of revolution 
( 2 /T = pπ ). The problem is that, Eq. (4) is not usable in 
analytical analysis, because it represents a discrete func-
tion. Therefore, in current research, a new analytical for-
mulation is derived to handle this problem. In this way, 
from Eq. (4) and after some simplifications, the following 
relations can be derived for N = 1:
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Also, for N = 2 it can be seen that:
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Finally, utilizing mathematical induction theorem, the 
analytical formula of ideal ON-OFF control surface dur-
ing N periods is given as
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Here, u(t) is unit step function. In a similar way to the 
ideal model, for real ON-OFF control surface in the case 
of N = 1 and N = 2 the following relations can be derived:
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Again, by mathematical induction theorem, for N pe-
riods, the analytical formulation of real ON-OFF control 
surface input command is given as
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3. Closed form solution derivation

By introducing the following two complex variables
NR NRi= +ξ b a ; (11)

NR NRq ri= +m . (12)

Eq. (3) takes the following simplified form (Murphy, 
1963)
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Figure 2. Time history of ideal ON-OFF actuator

Figure 3. Time history of real ON-OFF actuator
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( )p p q N
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Omitting variable m from Eq. (13) and Eq. (14), leads 
to a non-homogeneous second-order complex differential 
equation with discontinuous forcing term.
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Variables H, Ip, M, Tp and Mc represent effects of aero-
dynamic damping, gyroscopic motion, aerodynamic sta-
bility, Magnus moment and control surface, respectively 
(Zhou et al., 2014).

Before studying the effects of ON-OFF control sur-
face on airframe’s dynamic stability, a brief overview of 
airframe’s stability in free flight conditions will be pre-
sented. Assuming the control signal is zero ( ( ) 0N tδ = ), 
the solution of homogeneous form for Eq. (15) is an epi-
cyclical motion including a low frequency motion called 
precession and a high frequency motion namely nutation 
(Vaughn, 1968; Eikensberry, 1970):
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First term of Eq. (16) represents precession and second 
term is for nutation. The motion amplitude (K1,2) can ei-
ther grow or decrease, due to initial conditions, while the 
frequency (  1,2ω ) is constant. In statically stable airframes, 
the shape of airframe response in NR NRa − b  plane, is giv-
en by slowly rotating ellipses for small roll rates, flower-
like for medium roll rates, and for large roll rates is similar 
to the fast spinning gyroscopic pendulum1.

If a constant control surface or an asymmetric term is 
taken into account, ( ( )N tδ = δ ), the solution of generated 
non-homogeneous form of Eq. (15) is called tricyclic mo-

tion including precession, nutation and constant control 
surface effect (Nicolaides, 1953):
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The third term of Eq. (21), not only affects amplitude 
of nutation and precession modes via changing K1 and K2 
terms, in comparison to symmetrical case, but also may 
cause the “resonance instability phenomenon”. According 
to Eq. (24), if the denominator of third term converges 
to zero, infinite amplitudes can be reached and resonance 
instability takes place. It can be shown that in statically 
stable airframes, resonance instability could take place 
for nutation mode, i.e. airframe’s roll rate becomes equal 
or near to nutation frequency. In practice, occurrence of 
resonance instability in precession mode is impossible.

The dynamic stability of rolling airframe, in both free 
flight case and in presence of constant control surface, 
is widely studied in literature. But the effect of ON-OFF 
control input on rolling airframe dynamic stability isn’t 
presented previously. In this way, a new closed form solu-
tion problem will be derived. Taking Laplace transform of 
Eq. (15) leads to:
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where   indicates the Laplace transformation. Eq. (25) 
could be rearranged as below:
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Utilizing Laplace transformation method (Dawkins, 
2011) and previously generated models for ideal and real 
ON-OFF control surfaces, see section 3, new closed form 
solutions for Eq. (26) are derived.

3.1. Closed form solution for ideal ON-OFF control 
surface

Let us substitute the analytical model of ideal ON-OFF 
control surface, Eq. (7), into rolling airframe dynamic 
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model in frequency domain, Eq. (26) and get Laplace 
transformation from resulted relation. After needed com-
plex mathematical calculations, the following closed form 
solution is derived in frequency domain:
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Variables 1φ and 2φ  are denominator roots of Eq. (26) 
and previously obtained in Eq. (17) and Eq. (18). Proof of 
Eq. (27) is presented in Appendix A.

By taking inverse Laplace transformation of Eq. (26) 
the following closed form solution is developed in time 
domain:
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The solution has five terms. From Eq. (34), Eq. (35) 
and Eq. (36) it can be seen that ON-OFF control affects 
both amplitude and phase of nutation and precession 
modes. Another notable result reveals from this analyti-

cal solution is that in the case of ON-OFF control surface, 
relating to K4 and K5 terms, resonance instability may take 
place. Substituting 1,2φ  from Eq. (17) and Eq. (18) into 
denominator of Eq. (31) and Eq. (32) and making some 
simplifications results in following parametric relation for 
critical roll rate at which resonance takes place:

2

resonance 2 4
p pI I

p M= + + . (37)

3.2. Closed form solution for real ON-OFF control 
surface

In a similar way to ideal case, substituting Eq. (10) in Eq. 
(26) and using Laplace transformation properties, a new 
solution is derived in frequency domain, for rolling air-
frame dynamic with real ON-OFF control surface:
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Variables K1 and K2 are similar to that of ideal case, 
Eq. (28) and Eq. (29) and the other new terms are defined 
as below:
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ip ip
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Appendix B presents the proof of Eq. (38). Now, by 
taking inverse Laplace transformation of Eq. (38) the com-
plex angle of attack , in case of real control command 
will be given as bellow:

( ) 1 2
1 21 2

t t
N pt K e K eφ φ

φ φξ ξ ξ= + + + ξ+ , (45)
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where,
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Eq. (45) represents a new analytical formula for angu-
lar motion of airframe in presence of real ON-OFF control 
model. In comparison to ideal case, it can be concluded that 
the resonance also takes place in real case. This can be seen 
in K44 and K55 terms. Existence of time delay term τ  avoids 
the resonance in K4 and K5. Considering the time delay of 
actuator, it shifts the angular motion from that of ideal case, 

this can be seen from 2
T

e
−
τ  term in 

1φ
ξ , 2φξ  and pξ .

4. Dynamic stability analysis

In this section, the stability of ON-OFF canard controlled 
rolling airframe is proposed through simulation. The ef-
fect of ON-OFF control terms on airframe’s angular mo-
tion is also presented.

4.1. Angular motion of ON-OFF controlled 
airframe

Using numerical values of Table  1, and proposed 
closed form solutions, the planar and 3-dimensional 
responses with ideal and real ON-OFF controls are 
drawn in Figure 4 and Figure 5. The initial condi-
tions are selected as 0 NR0 NR0 3 2i iξ = b + a = + and

00 NR0NR 0 0
d d d

i i
dt dt dt
ξ b a

= + = + . As can be seen, the 

angular motion forms a limited cycle. This shows a dy-
namically stable behavior. This result is compatible with 
that of (Mohammadi et al., 2016). It can also be seen that 
the angular motion in real actuator is shifted down, in 
comparison with ideal actuator. This is due to the single 
lag dynamic model of actuator which plays a role of time 
shift. And finally one can say that in steady state condi-
tion, the diameter of limit cycles in real actuator is smaller 
than ideal actuator. This is related to the fact that the aver-
age control effectiveness in presence of actuator’s dynamic 
model is less than ideal actuator.

Table 1. Parameters of a rolling airframe

Parameter Value

H –16.696
M 1897.042
Ip 0.431 rad/sec
T 15.429

Mc 1399.304+ 25.01i
δmax 15 deg

P 15Hz
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Figure 4. Rolling airframe planner motion representation in 
presence of real and ideal ON-OFF actuator models

Figure 5. Three-dimensional angular motion in presence of real 
and ideal ON-OFF actuator model
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4.2. Eff ect of roll rate on resonance instability

In section 3, it was analytically proven that the ON-OFF 
actuator aff ects both amplitude and phase of nutation and 
precession motions. We also stated that both 2φξ  and 

pξ terms may cause resonance instability. Now, utilizing 
obtained closed form solutions and numerical values of 
Table  1, several analyses are down. It is clear that each 
term of Eq. (33) and Eq. (44) is a complex number with 
real and imaginary parts. Here, Euclidian norm of each 
term is called amplitude of that term. In literature this is 
called total angle of attack. Amplitude of 1φξ , 2φξ and pξ
terms, for ideal actuator, at a constant roll rate p = 15 Hz 
are drawn in Figure 6, Figure 7 and Figure 8. Th e oscilla-
tory behavior of these terms is because of discontinuous 
ON-OFF actuator. Also it can be seen that all three terms 
converge to a limited cycle. Th is states that in the case of 
nominal roll rate p = 15 Hz there is no evidence of dy-
namic instability.

Now, the eff ect of rolling airframe roll rate on dynamic 
stability behavior with ideal actuator is studied in Figure 
9, Figure 10 and Figure 11. As shown, both 2φξ  and pξ
reach the maximum amplitude when roll rate converges 
to nutation frequency, i.e. 2 42.96 rad/secω = . While, 1φξ
reaches its maximum amplitude at frequency 22 rad/sec. 
Th is value is not possible to be reached and 1φξ  doesn’t 
cause any resonance. Considering the rolling airframe roll 
rate range, one can judge about the occurrence of reso-
nance phenomena arising from both 2φξ  and pξ terms.
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Figure 6 . Time history of 1φξ  amplitude in ideal ON-OFF 
actuator for p = 15 Hz

Figure 7.  Time history of 2φξ  amplitude in ideal ON-OFF 
actuator for p = 15 Hz

Figure 8. Ti me history of pξ  amplitude in ideal ON-OFF 
actuator for p = 15 Hz

Figure 9. Roll rate e ff ect on time history of 1φξ  amplitude in 
ideal ON-OFF actuator

Figure 10. Roll rate eff  ect on time history of 2φξ  amplitude in 
ideal ON-OFF actuator

Figure 11. Roll rate eff e ct on time history of pξ  amplitude in 
ideal ON-OFF actuator
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Similarly, for real ON-OFF control command, ampli-
tudes of 1φξ , 2φξ and pξ terms with respect to time and 
airframe roll rate are drawn in Figure 12, Figure 13 and 
Figure 14. It can be seen that the amplitude of pξ  in real 
ON-OFF control is smaller rather than that of ideal con-
trol. It also can observed that these three control terms, 
aft er passing their peak value, tend to decrease with the 
roll rate growth.

From previous fi gures, in both ideal and real ON-OFF 
control commands, it can be seen that roll rate doesn’t 
cause divergence situation, but it might cause critical dy-
namic stability in which the diameter of limit cycle in-
creases largely. Th e limit cycle reach’s the maximum di-
ameter when roll rate converges to nutation frequency 

42.96 rad/sec  6.8 HZp = ≈ Hz. As a result, to keep rolling 
airframe in safe region of dynamic stability, the roll rate 
should be bigger than twice nutation frequency. Th e dif-
ference of diameter in formed limit cycle between critical 
and nominal roll rate is shown in Figure 15 and Figure 
16 for both ideal and real ON-OFF actuator respectively.

At last, the dynamic response is drawn for two diff er-
ent roll rates, in both ideal and real controls in Figure 17 
and Figure 18. Th ese fi gures clarify that, in steady state 
conditions, the diameter of limit cycle when P = 20 Hz is 
smaller than that of P = 15 Hz. Th erefore, one can say that 
in steady state conditions, the control terms are eff ective 
on the angular motion behavior. Th e total dynamic motion 
amplitude decreases when roll rate increases, due to ampli-
tude descending trend of three control terms 1φξ , 2φξ and 

pξ with roll rate growth. Finally, from Figure 18, it can be 
seen that in presence of actuator dynamic, increasing roll 
rate causes the angular motion to be shift ed down.

Figure 12. Roll rate eff ect on  time history of 1φξ  amplitude in 
real ON-OFF actuator

Figure 13. Roll rate eff ect on ti me history of 2φξ  amplitude in 
real ON-OFF actuator

Figure 14. Roll rate eff ect on time  history of pξ  amplitude in 
real ON-OFF actuator
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Figure 15. Diameter of limit cycle in critical and nominal roll 
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5. Validation of proposed closed form solutions

In this section, the new closed form solutions are com-
pared with linear 4-DOF equations of motion, Eq. (3), 
in Figure 19 and Figure 20. 4-DoF equations are solved 
utilizing ode45 solver of MATLAB software. Ode45 is a 
numerical integration method based on an explicit Runge- 
Kutta (4, 5) formula, the Dormand- Prince pair (Shamp-
ine & Reichelt, 1997; Dormand & Prince, 1980). And the 
comparison was done for the same parameters shown in 
Table 1 and for that initial conditions used in section 4.1. 
As can be seen, the closed form solutions in both ideal 
ON-OFF control and real ON-OFF control provide dy-
namic behavior similar to original 4-DOF model.

Conclusions

In this paper, the linear theory is used in studying the dy-
namic stability of rolling airframe with one pair ON-OFF 
actuator. New closed form solutions are developed for ide-
al and real one pair ON-OF control. Utilizing the devel-
oped analytical models, the following notable results are 
obtained: It is shown that the ON-OFF control affects both 
amplitude and phase of nutation and precession motions. 
The resonance resources are determined and the effect 
of roll rate on the amplitudes of added ON-OFF control 
terms is studied. It is found that, when the actuator dy-
namic is taken in consideration (in real case), the angular 
motion is shifted from that in ideal case. This is due to the 
dynamic of actuator which plays a role of time shift. It was 
also found that in steady state conditions, the diameter of 
limit cycles in real case is smaller than that of ideal case. 
This is related to the fact that the average control effec-
tiveness in the presence of actuator’s dynamic is less than 
that in case of neglecting actuator dynamic. Finally, it is 
illustrated that increasing the rolling velocity of airframe 
causes the amplitudes of ON-OFF control terms to de-
crease. This results in limit cycles with smaller width. The 
proposed analytical formulation may be used in analyzing 
other dynamic instability resources like conical motion as 
well as closed loop analysis of one pair ON-OFF actuator.
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Appendix A

Using proof by induction method, Eq. (27) is proved as 
follows. According to Eq. (7), for N = 1, the statement of 
ideal ON-OFF command is given as:
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Using characteristic of Laplace transform we find that
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e e
S ip

 
− +  − + 

− + − +

    δ = δ − − + − =         
 

  δ − −



+ − =     

δ
− +

−

 

 
 

 



 
(A.2)

Substituting in Eq. (26) for N = 1, we get

( ) 1 2
1

1 2

3 54 2
1 2

1 2
Tip S ipTS

K K
S

S S

K KK
e e

S S S ip

ξ = + +
− φ − φ

  
 + + × − +   − φ − φ −   

, (A.3)

so, Eq. (27) is satisfied for N  = 1. Assuming Eq. (27) is 
satisfied for N, we will try to prove it for N + 1. For N + 1, 
the statement of ideal ON-OFF command is expressed as:

( ) ( )

( )

( ) ( )

( ) ( )( )

1
0

1

1

2 1
2

2 1
2

2 1
2

2 1 1
1

2
.

N

N max
j

N

max
j

N max

max

j
t u t jT u t T

j
u t T u t jT

Nt u t NT u t T

N
u t T u t N T

+
=

+

=

 + 
δ = δ − − − −     

 − 
δ − − − =     

+ δ + δ − − − − 
 

 + −
δ − − − +  



 

 
 
 


 
 
 

∑

∑
 

(A.4)
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Substituting in Eq. (26) we find that

( ) ( ) ( ) ( )
( )

( ) ( )( )

1 2

2 1
2

2 1 1
1

2

c max
N N

p p

ipt

ipt

iM
S S

H iI S M iI T

Nu t NT u t T e

N
u t T u

S

t N T e

+
δ

ξ = ξ + ×
− + + +

   +  − − − −   
     
    + −   − − − +          





, (A.5)

then,

( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( )

( )( ) ( )( ) ( )

1 2

2 1 2 1
2 2

2 1 1 2 1 1
2 2

1 1

2 1
2

2 1 1
2

1

c max
N N

p p

N Nip t T ip T
ip t NT ipNT

N N
ip t T ip T

ip t N T ip N T

iM
S S

S H iI S M iI T

Nu t NT e u t T e

N
u t T e

u t N T e

+

+ + 
− + − +  

 + − + −
− +  

 

− + + +

δ
ξ = ξ + ×

− + + +

  
+  − − − −     

 
 + − 
− +   

  
 
 − +  










 
 
 
 
 
 
 
 
 
 
 
 



.

(A.6)

Getting Laplace transformation, we have:

( ) ( ) ( )( )

( ) ( )

1
1 2

2 1 2 1 
2 2

2 1 2 1
1 12 2

1c max
N N

N NTS ip TNTS ipNT

N NTS ip T N TS ip N T

iM
S

S ipS S

e e

e

S

e

+

+ +
− +− +

+ +
− + − + + +

δ
ξ = ξ + ×

−− φ − φ

 
 −
 
  − + 

. (A.7)

By writing the explicit expression of ( )N Sξ  we get:

( )

( ) ( )

1 2
1

1 2

3 54

1 2
2 1 2 11 1
2 2

1 0
2 1 2 1

1 12 2

1 2 2

2

N

j jN N TS ip TjTS ipjT NTS ipNT

j j
N NTS ip T N TS ip N TNTS ipNT

K K
S

S S
K KK

S S S ip

e e e e e e

e e e

+

+ +− − −− −

= =
+ +

− + − + + +− +

ξ = + +
− φ − φ

 
+ + × 

− φ − φ − 
 
 + − +
 
 
  + − + 

∑ ∑ .

 (A.8)

At the end we have

( )

( ) ( )

3 51 2 4
1

1 2 1 2
2 1 2 1

1 12 2

1 0
1 2 2

N

j jN N TS ip T N TS ip N TjTS ipjT

j j

K KK K K
S

S S S S S ip

e e e e e

+

+ +
− − + + +−

= =

 
ξ = + + + + × 

− φ − φ − φ − φ − 
 
 + − +
 
 

∑ ∑ .

(A.9)
Therefore, Eq. (27) is satisfied for N+1, by a result it is 

satisfied for each N ∈.

Appendix B

In a similar way, of proving Eq. (27), we will prove Eq. 
(38) using the mathematical method “Proof in induction” 
as below steps. First, we prove it for N = 1. The statement 
of real ON-OFF command for N = 1 is given as:

( ) ( )

( )

1

1 max

1
2

max

2 0.5
2

2 1 .
2

t

Tt

Tt e u t u t

Te u t u t T

−
τ

 
− − τ 

  δ = δ − − − + −  
  

    δ − − − −  

 
 
 


   



 

. (B.1)

By getting properties of Laplace transformation, we 
find that

( ) ( )

( )

1

1 max

1

2max

2 0.5
2

2 .
2

t ip
ipt ipt

Tt ip
ipt

Tt e u t u t e e

Te e e u t u t T

 
− τ 

 
− + τ  τ

     δ = δ − − − + −         
      δ − − − −           

 



 

(B.2)
Simplification results in:

( )
1

22
1 max

1 1
2 2 22 2 2

max

1 0.52
1 1

2 .
1 1

TT ipS
ipt

T T TT T T ip T ipS ip STS ipT TS

e et e
S ipS ip S ip

e e e e e e e e
S ip S ip S ip S ip

 
− − τ 

   
− + − +   − −− −τ τ τ τ   

 δ = δ − + + −  −− + − +
τ τ

 
 
 δ − − +

−



 
 
 



− − + − + τ τ 

 
 



 

(B.3)
And finally:

( )
1

22
1 max

22 2 2 2
max

2 12
1 1

2 2 .2 2
1 1

TT ipS
ipt

TT T T T ipTS ip S ipTS ipT TS

e et e
S ipS ip S ip

e e e e e e e
S ip S ip S ip S ip

 
− − τ 

−− − +− − τ

− δ = δ + + +  −− + − +
τ τ

δ − + + −
− − − + −

τ

 
 
 
 
 
 

 
 


τ


 
 
 

+



(B.4)
Substituting in Eq. (26) for N = 1, we get

( ) 3 51 2 4
1

1 2 1 2

1
2 22 2 2

33 5544 2 2
1 2

1

2 2 2 2

1 2 2 .

T TT T Tip ipTS S ip TS

T TS ip TS ipT

K KK K K
s

S S S S S ip

e e e e e

K KK
e e e e

S S S ip

 
− − − − + −τ  τ

− −

 
 
 ξ = + + + + ×

− φ − φ − φ − φ − + τ 
 
 − + + − +  
 

  
 + + × − +   − φ − φ −   

(B.5)
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So Eq. (38) is satisfied for N = 1. Then, we assume that 
Eq. (38) is satisfied for N and we will try to prove it for 
N + 1. For N + 1, the statement of real ON-OFF command 
is expressed as follows

( )

( )

1 max

max

0

2 1
21

1

2 1
1 2

2

2 1
2 1 .

2

( )
t jTN

j

jt T
N

j

N
j

e u t jT u t T

j
e

t

u t T u t jT

−
−

τ

=

− 
− − 
 +

τ

+

=

 +
δ

  − − − − − −    
 
  −  − − − −   

 
= δ  

  










 

δ



∑

∑

(B.6)
More simplification gives:

( )

( )( )
2 1
2

1
2 12

2

2 12 1 1 .

(

2

t)
t NT

N max

Nt

m

N

T

ax

Ne u t NT u t T

Ne u t T u t N T

+

−
−

τ

+
− −

−
τ

 
δ

+ = δ − δ − − − − 
 

 
  +  δ − −

 


− − +    



  
  (B.7)

Substituting Eq. (B.7) in Eq. (26) we find that:

( ) ( ) ( )( )

( )

( )( )

1
1 2

2 1
2

  

2 12
2

.
2 12 1 1

2

c max
N N

t NT
ipt

Nt T

ipt

iM
S

S S

Ne u t NT u t T e

Ne u t T u t T

S

N e

+

−
−

τ

+
−

−
τ

δ
ξ = ξ + ×

− φ − φ

  +   − − − − −      
   
    +    − − −



− + 

 


 

            





 (B.8)

By taking Laplace transformation of terms in brackets 
in a similar way to case N = 1, we get

( ) ( ) ( )( )

( ) ( ) ( ) ( )

1
1 2

2 1 2 1 2 1 2 1
2 2 2 2

2 1 2 1 1 11 1 22 2

 

2 2 2
1 1

2 2 2
1 1

c max
N N

N T N N Nip T TS ip T TSipNT NTS

TN N ip N T N TSip T TSip N T N TS

iM
S S

S S

e e e
S ipS ip S ip

e e e
S ip S ip S ip

+

+ + + +− − −− τ

+ +
+ − + −−+ − + τ

δ
ξ = ξ + ×

− φ − φ

 
 
− + − − − + − +

τ τ 
 
 
+ + − 

− − + − + τ τ 

.

(B.9)

After simplification, we have

( ) ( )
( )( )

( ) ( )

( )( )( )
( ) ( )

1

1 2

2 1 2 1 2 1 2 1 1 1
2 2 22 2

2 1 2 1
1 12 2

1 2

 
1

2 2 2 2

2 2 .

c max
N N

N T N TN Nip T TS ip N T N TSip T TSipNT NTS

N Nip T TS ip N T N TS
c max

iM
S S

S S S ip

e e e e

iM e e
S ip S ipS S S ip

+

+ + + +
− − + − + −−− τ τ

+ +
− + − +

δ
ξ = ξ + ×

 − φ − φ − + τ 
 
 − + + − +
 
 

 
 δ

× − + − −− φ − φ −  
 

 (B.10)

Writing the expression of ( )N Sξ  and adding the rest 
expressions to the sum term, we get

( )

( ) ( )

3 51 2 4
1

1 2 1 2

2 1 2 11 1 1
1 1 2 22 2

1 1 1

21
33 5544

1 2 1

1

2 2 1   2

1 2

N

T Tj jN N N ipjTTS ip Tj TS ip j T jTS

j j j

jN

j

K KK K K
S

S S S S S ip

e e e e e e e

K KK
e

S S S ip

+

−− −+ + + −−− − − −τ τ

= = =

−+ −

=

 
 
 ξ = + + + + ×

− φ − φ − φ − φ − + τ 
  
  − + + −

  
  

 
+ + + × − 

− φ − φ − 

∑ ∑ ∑

∑
1 2 1 1

2 2

1
2 .

j NTS ip T jTS ipjT

j
e e e

− +
−

=

 
 +
 
 

∑

 (B.11)

Therefore, Eq. (38) is satisfied f or N + 1 and it is 
proved for any N ∈ .


