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Abstract. In this paper, the propagation of uncertainty in a cooperative navigation algorithm (CNA) for a group of flying 
robots (FRs) is investigated. Each FR is equipped with an inertial measurement unit (IMU) and range-bearing sensors to 
measure the relative distance and bearing angles between the agents. In this regard, an extended Kalman filter (EKF) is 
implemented to estimate the position and rotation angles of all the agents. For further studies, a relaxed analytical perfor-
mance index through a closed-form solution is derived. Moreover, the effects of the sensors noise covariance and the num-
ber of FRs on the growth rate of the position error covariance is investigated. Analytically, it is shown that the covariance of 
position error in the vehicles equipped with the IMU is proportional to the cube of time. However, the growth rate of the 
navigation error is, considerably more rapid compared to a mobile robot group. Furthermore, the covariance of position 
error is independent of the path and noise resulting from the relative position measurements. Further, it merely depends on 
both the size of the group and noise characteristics of the accelerometers. Lastly, the analytical results are validated through 
comprehensive Guidance, Navigation, and Control (GNC) in-the-loop simulations.
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Introduction

In recent years, autonomous robots have achieved sig-
nificant impacts on business, industry and people’s so-
cial and private affairs as well. Needless to say, FRs have 
made a substantial contribution to field the field of 
autonomous robotics which have led to significant im-
provements. In this regard, the IOD, one of the elements 
of smart cities, is a newly emerging branch of aerial ro-
botics. The IOD, a layered network control architecture, 
is designed primarily for managing aerial robots’ (AR) 
access to controlled airspace (Chakraborty et al., 2016). 
ARs can also be regarded as an aerial base station to col-
lect data service from sensors to the consumers, deploy-
ing in a smart city (Chakraborty et al., 2019).

By the advent of a new generation of technologies in 
robotics, a new idea called “Cooperative Robotics” (CR) 
has recently emerged to achieve complex missions (Enay-
atollahi & Atashgah, 2018; Kemsaram et al., 2017). This 
concept was rapidly embraced and developed in the field 
of AR as well. In this regard, the authors of (Lee, 2020) 
have proposed a CNA using the technology of IODs. 
A group of FRs is more robust than a single one and by the 

employment of a team of inexpensive and miniature FRs, 
complex missions can be performed (Ryan et al., 2004). 
One of the most important subsystems of autonomous 
robots is the navigation subsystem providing the posi-
tion, velocity, and attitude (PVA) of a vehicle. Moreover, 
this subsystem feeds guidance and control (GC) systems 
to guidee the vehicle towards the desired state/trajectory. 
Consequently, the role of this subsystem, specifically in 
ARs, is is so vital that its failure can halt the mission.

Most of the current navigation methods are dedicated 
to the optimal fusion of the measurements of propriocep-
tive and exteroceptive sensors. The proprioceptive sensors 
monitor the motion of the vehicle, while the exterocep-
tive sensors detect the surrounding environment and its 
signals (Roumeliotis & Bekey, 2000). One of the most 
ubiquitous proprioceptive sensors in FRs is IMU which 
conventionally involves three accelerometers and three 
gyros. By integrating the outputs of the IMU sensors, the 
three-dimensional (3D) position and attitude of the ve-
hicle are calculated, that’s why the INS has an incremen-
tal error over time. To resolve this problem, sensors and 
other technologies with non-dead-reckoning nature are 
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fused with the inertial sensors. One of the most widely 
used technologies in almost all navigation systems is the 
GNSS. However, GNSS signals may be unavailable due to 
a variety of reasons including: the state of the ionosphere, 
towers, and buildings in urban areas, mountain ranges, or 
jamming conditions. There are many tools available for 
estimation and identification of the state variables and pa-
rameters of a vehicle by fusion of the measurements and 
motion data. The family of Kalman filters (KFs) are ref-
ered to as the most pervasive real-time estimators in the 
field of navigation (Simon, 2006).

As mentioned before, sometimes exteroceptive data 
like GNSS signals are not available, as a result, the mis-
sion may fail. To enhance the reliability and robustness in 
the field of robotics, the concept of cooperation and col-
laboration was also developed for the navigation subsys-
tems. For the first time, Kurazume et al. (1994) proposed a 
new localization method called “cooperative positioning”. 
In this model, the agents share their position and meas-
urement data with the other ones to minimize the overall 
position error by integrating all the data. Later, Roume-
liotis and Bekey (2000) presented a new method called 
“Collective Localization” based on which the localization 
problem in a group of mobile robots (MR) is solved in a 
distributed configuration and without any external source 
like GNSS or map data. Each robot collects data from its 
motion sensor (proprioceptive sensor) and relative sensor 
(exteroceptive sensor) then shares this information with 
the rest of the team. Linear observability analysis indicates 
that the system is not observable unless at least one of the 
robots has access to the absolute position (i.e. GNSS). The 
authors in (Rekleitis et al., 2002) investigated the effects 
of different observations like relative range, bearing, and 
orientation, besides the number of agents on the perfor-
mance of the cooperative localization. Moreover, Reklei-
tis and Roumeliotis (2003) and Roumeliotis and Reklei-
tis (2003), presented an analytical solution of the upper 
bound of the increase rate of the uncertainty, as a func-
tion of the number of the agents and the odometer error. 
Furthermore, in Rekleitis and Roumeliotis (2003) all ro-
bots are restricted to move along one dimension while in 
Roumeliotis and Rekleitis (2003) the robots can perform 
planar motions. For the first time, Martinelli and Siegwart 
(2005) presented a nonlinear observability analysis meth-
od (Lie algebra) for two MRs, based on polar coordinates. 
Moreover, it is shown that a relative bearing measurement 
provides the most observability between the robots. It is 
worth noting that the method presented in Roumeliotis 
and Bekey (2000), was developed with the most general 
relative measurements between two robots. The method 
used by Martinelli et al. (2005), is practical for real appli-
cation; due to the existence of sensors to measure the data.

Succinctly put, the first results indicate that the rela-
tive bearing can improve localization accuracy better 
than other relative measurements. Later, Mourikis et al. 
(2006) presented a closed-form relation for calculating 
steady-state covariance of the position error when only 
one of the robots has access to a piece of absolute posi-

tion information. The paper presents a closed-form so-
lution for calculating the growth rate of the covariance 
of the position error in the absence of absolute position 
data. For the first time, Sharma and Taylor (2008) used 
the concept of the CN for a group of miniature aerial 
vehicles (MAV). Each agent receives all IMU and relative 
position measurements from adjacent agents and inte-
grates them by using an EKF. In this method, each MAV 
estimates the PVA of itself and the nearby MAVs. Like-
wise, by a nonlinear observability analysis, it is shown 
that, in this method, the biases of the IMU can be ob-
servable. In 2009, Sharma presented a distributed CNA 
for a MAV group using a camera mounted on each agent, 
which measures only the relative bearing angle (Sharma 
& Taylor, 2009). The simulation results were presented 
for two modes: the first one with two known landmarks, 
and the other without any landmark. Afterward, in Bahr 
et al. (2009) the authors presented a technique for a con-
sistent CN of multiple autonomous underwater vehicles 
(AUV’s). The paper addresses the problem of overconfi-
dence in the localization of robots while sharing naviga-
tion information for the CN. Each AUV accurately traces 
the source of the measurements and prevents them from 
being used more than once. Multiple estimates are con-
sistently combined and provide conservative covariance 
estimates. Gao and Chitre (2010) presented a CNA for 
two AUVs with different navigational capabilities using 
range-only measurements; where AUV with higher po-
sitioning accuracy plays the role of a beacon for the one 
with lower accuracy. Subsequently, Sharma et al. (2012) 
presented a graph-based method to analyze the nonlinear 
observability of the bearing-only CN. they used graph 
properties between two nodes to explain the observabil-
ity of the system. In Sharma et  al. (2013), the authors 
developed a test-bed of three ground robots equipped 
with the wheel encoders and omnidirectional cameras, 
to implement the bearing-only cooperative localization. 
Simulation and experimental results are presented to val-
idate the observability conditions (Sharma et al., 2012) 
for the complete observability of the bearing-only coop-
erative localization problem. Furthermore, Wanasinghe 
et al. (2016) used the split covariance intersection algo-
rithm for decentralized CN. Similarly, Goel et al. (2016) 
developed an algorithm to estimate the 3D position of a 
group of UAVs using low-cost sensors. The paper inves-
tigated the performance of the algorithm under available 
and unavailable GNSS conditions in both centralized and 
decentralized configurations.

At the same time, Chakraborty et al. (2016) presented 
a centralized cooperative localization for a group of fixed-
wing UAVs, based on relative measurements between the 
agents and some landmarks with a known position, in 
a GNSS denied condition. However, Goel et  al. (2017) 
used a UWB module as a relative sensor between UAVs, 
in which the estimated state vector includes some IMU 
parameters, such as gyro and accelerometer biases to 
improve accuracy. In Sullivan et  al. (2018) Sullivan in-
vestigated how a CL algorithm performs under different 



12 A. Faghihinia et al. Analytical expression for uncertainty propagation of aerial cooperative navigation

conditions. This paper investigated a CL under varying 
sensor specifications (position accuracy, yaw accuracy, 
sample rate), communication rates, and the number of 
robots for both homogeneous and heterogeneous multi-
robot systems. In this paper it is founded that yaw ac-
curacy has a substantial effect on CL performance, also a 
fast communication rate can be detrimental, and hetero-
geneous systems are greater candidates for cooperative lo-
calisation than homogeneous systems. Later, Chakraborty 
et al. (2019) demonstrated that each FR group can localize 
itself using only two known landmarks and only relative 
bearing observations. He used two bearing angles in 3D 
space for the CNA. The conditions required to maintain 
observability and perform consistent estimations, using 
Lie algebra were also presented.

To the best of the authors’ knowledge, the analysis of 
the behavior of error covariance variations in the coop-
erative navigation for a group of FRs still demands more 
elaborations; though, the reviews admit this statement. 
One of the contributions of this work is that in this re-
search a closed-form solution is derived as a function of 
time to predict the covariance of the position error due to 
the CN which is applied in a group of FRs. Furthermore, 
the validation process is conducted via numerical GNC 
in-the-loop simulations. It is considered that all of the FRs 
comprise a guidance and control system (GCS) to follow 
a predefined path, planned via arbitrarily distributed way-
points. It is worthwhile to mention that, the GCS includes 
a waypoint navigation system (WNS) for path following 
and a cascade control system as the controller, which per-
forms a convenient apparatus for the applicability, validity, 
and performance evaluation purposes. Besides, the simu-
lations exploit 6DoF equations of motion along with the 
GC and CNA systems for each of the FRs. The related 
toolsets have been accompanied meticulously under the 
Matlab environment, for the supplementary software-in-
the-loop (SIL), hardware-in-the-loop (HIL), and practical 
filed tests.

This paper is organized as follows. Section 1 describes 
the algorithm of the CN in a group of FRs in which the 
formulations of the problem are rendered. In Section 2 a 
closed-form solution is derived to describe the behavior of 
the covariance of the position errors. Subsequently, the sim-
ulation results are presented in Section 3. Lastly, the con-
clusions and future work are presented in the last section.

1. Cooperative navigation

The group of FRs here consists of ‘N’ quadrotors which fly 
inside a GNSS denied environment and employs an EKF 
to perform the CN algorithm. Each FR is equipped with 
an IMU to perform dead-reckoning process (propagation 
of the state variables) and a relative sensors to measure the 
inter-agent relative range and bearing angles. In Figure 1, 
the notations θ and ψ signify pitch and heading angles, 
while the symbols α and β stand for the relative eleva-
tion and relative azimuthangles, respectively. Here, we 
extend the cooperative localization method introduced in 

(Roumeliotis & Bekey, 2000), for a group of FRs. In this 
method, all agents of the group are considered as a unified 
system. The agents exchange their information including 
measurements and the estimated position data. Accord-
ingly, the exchange of each exteroceptive measurement 
leads to an improvement in the estimation of the overall 
position error. The exteroceptive sensors measure the rela-
tive range and bearing angles between the agents.

As stated, an EKF estimator is used to performe the 
method. As usual, the EKF is divided into the prediction/
propagation and update cycles (Bayat & Atashgah, 2017). 
In the prediction phase, the knowledge concerning the 
state variables of the system is propagated to the next step; 
based on the evolution of the state variable equations, the 
measured control inputs, and the statistical behavior of 
the system noise. In the update phase, the relative pose 
measurements are processed to update the propagated 
state variables during the prior phase.

1.1. Inertial navigation state-space equations

As mentioned before, all agents are quadrotor type. Since 
the operating conditions are at low speed and range, the 
non rotating NED reference frame is utilized to resolve 
the state variables. The state vector of the ith agent con-
sists of 3D position, velocity and attitude vectors (PVA), 
which is defined as below:

, 1
T

i i i iX r v i N = ψ = …  , (1)

where the superscript ‘T’ indicates the transpose mode of 
the state vector and subscript ‘i’ denotes the number of 
FRs in the group. The notations rivi and ψi respectively 
are the PVA vectors of the ith agent. Subsequently, the 
navigation equations for a single flying robot in a none-
rotating NED frame can be written as:

e e
i ir v= ; (2)
e e b e
i ibv C a g= + ; (3)

b
i iRψψ = ω , (4)

where e indicates the NED frame and b stands for 
the body frame. Also, b

ia , eg , and b
iω  respectively 

stand for the measured specific force vector (the linear 
acceleration except for gravity) in the body frame, the 
gravity acceleration vector in the Earth frame, and the 
measured rotational velocity vector in the body frame. 

Figure 1. Relative azimuth and elevation angles between the ith 
and jth agents
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Correspondingly Rψ  and e
bC  are determined as follows 

(Titterton & Weston, 2004): 
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, (6)

in which e
bC  indicates the body to Earth frame transfor-

mation matrix, and c and s notations signify the math-
ematical cosine and sine functions. As mentioned earlier, 

b
ia and b

iω are the measured linear specific force and ro-
tational velocity vectors, which are corrupted by a zero-
mean white Gaussian noise ( aε  and ωε ) with known 
covariances:

,   i i i i aa aωω = ω + ε = + ε ; (7)

{ } { }2 2 2 2,    a aE Eω ωσ = ε σ = ε . (8)

1.2. Cooperative EKF prediction

This section describes the prediction state equations es-
tablished by purturbing the state and inputs variablesin 
Eqs. (2)–(4). The linearized state error equation for the 

thi  agent is as follows:
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where I is the identity matrix, the script ‘~’ signifies the 
error parameter and ea  can be calculated as follows:

ˆ .e e b
ba C a= , (10)

where ‘^’ signifies the estimated parameters. Consequent-
ly, Eq. (9) in discrete-time form is given by:

 ( ) ( ) ( ) ( ) ( )1i ik i k k i k i kX t F t X t G t U t+ = +
  

, (11)

in which  i i i iX r v = ψ 


   represents the ith error state 
vector, tδ  is the time step, iF  and iG  are the system 
dynamic and input noise matrices, and iU



 indicates the 
system input due to IMU measurement noise. In the fol-
lowing, iF  and iG  are given by:
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Therefore, the system noise covariance is given by:
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Subsequently, the error propagation equation for the 
augmented system including the error dynamic model of 
all agents can be written as:

1
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(16)
Consequently, the error covariance can be predicted 

through the following equation:

( ) ( ) ( ) ( ) ( )1k k k d kkP t F t P t F t Q t− +
+ = + , (17)

where ( )kP t +  and ( )1kP t −
+  are respectively the priorly 

corrected and the currently updated covariance matrices 
of the whole system can be defined according to the fol-
lowing relation:
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
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

. (18)

1.3. Cooperative EKF update

Assuming that each flying robot is equipped with a UWB 
module or a camera to measure the relative range and 
bearing angles; the measurement equation between the 

thi and thj  agents can be written as below:

( ) ( ) ( )2 2 2
ij j i j i j ix x y y z zρ = − + − + − ; (19)

1 j i
ij i

j i

y y
tan

x x
−

−
β = − ψ

−
; (20)

( ) ( )

1

2 2
,

     ˆ  j i
ij i

ij

ij i j i j

z z
tan

d

d x x y y

−
−

α = − θ

= − + −

 (21)

where ijρ , β and α indicate the relative range, azimuth, 
and elevation angles between the agents, respectively. 
Figure 1 depicts the relevant parameters in defining 
the azimuth and elevation angles between the jth and ith 
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agents of the group. These measurements can be utilized 
to update the state variables and error covariance matri-
ces; the linearized equation of observation used in the 
update step is as follows:

( ) ( ) ( )1ij k ij k k ijZ t H t X t n+= +



 , (22)

while ijn


 is the measurement zero-mean white noise 
with the covariance of
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in which all derivatives are calculated by the following 
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2. Closed-form solution on uncertainty 
propagation

In this section, the performance of the CN algorithm in a 
group of FR is analyzed and then a closed form solution 
is derived.
A: Prediction Step Uncertainty Propagation.

2.1. Flying robot case

As stated before, this work employs EKF as an estima-
tor in the CN method. To evaluate EKF performance, 
changes in the error covariance matrix over time can be 
a proper index. As mentioned before, the EKF comprises 
two primary steps: Prediction and Update, where each 

section is analyzed separately. For simplicity and coher-
ence with other works, it is assumed that all agents per-
form a planar motion. Consequently, the state vector of 
each agent can be redefined as:

i x y i
X x y v v = ψ  , (29)

in the following, the Riccati equation is used to evaluate 
the error covariance in each section (Simon, 2006):

T
i i i i i dP A P P A Q= + + , (30)

where iA  denotes the system dynamic matrix of the thi  
agent in planar motion, which is defined as:
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where e
ya  and e

xa  are the agent’s acceleration in y- and 
x-direction at the flat earth NED reference frame. By 
substituting Eq. (31) into Eq. (30) the differential equa-
tion of error covariance can be written in a state space 
form as below:
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(32)
Hence, the closed-form solution of the above equa-

tions in constant acceleration mode is obtained as follows:

( ) ( )

( ) ( )
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σ σ
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σ σ
= + + + +

= σ +
 (33)

where all 0P−−  are initial values of the covariance ma-
trix. The third relation in Eq. (33) demonstrates that 
the heading error covariance grows linearly with time 
and slope 2

ωσ . In the following, through the numerical 
simulations, it is shown that, the effect of the accelera-
tion terms on the first two relations of Eq. (33) is negli-
gible compared to other terms. To illustrate this claim, 
the percentage of error covariance difference in both ac-
celerated and non-accelerated trajectory is defined as a 
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criterion, which can be calculated through the following 
relation:

100a Na

Na

P P
P
−

∆ = × , (34)

where aP  and  NaP are respectively the position error 
covariance in an accelerated and non-accelerated trajec-
tory. In the following, Figure 2 depicts the numerical 
simulation results of a quadrotor flying in an accelerated 
trajectory. In this simulation, the quadrotor flies to pass 
through a waypoint at 40 meters away in the x-direction. 
acceleration, position, and position error covariance due 
to the dead reckoning are noticeable in Figure 2. Sub-
sequently, Figure 3 exhibits the time-history of the per-
formance criteria as stated in Eq. (34). As stated earlier, 
Figure 3 reveals that the effect of body acceleration on 
the position error covariance is negligible.

Besides, Table 1 presents the range of standard devia-
tion of IMU sensors noises in different grades including 
“control”, “tactical” and “navigation”; which have been used 
in different simulaitions to evaluate the position error co-
variance. It is concluded that the magnitude of the third 
term, in the first two relations of Eq. (33), dominates the 
rest. It should be noted that in subsequent simulations, the 
IMU sensor with a “control” grade is utilized.

Table 1. Standard deviation range of the IMU sensors in 
different grades (Shin & El-Sheimy, 2001)

Sensor Error / IMU Grade Navigation Tactical Control

Gyro Noise Std (deg/h) 0.005–0.01 0.1–10 +100
Accelerometer Noise Std (mm/s2) 0.05–0.1 2–4 +12

Assuming that the initial state errors are zero, the re-
lations of Eq. (33) can be approximated as follows:

2
3

2
3

2

3

3
.

a
xx
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P t

P t

P tψψ ω

σ
≅

σ
≅

≅ σ

 (35)

Eq. (35) shows that the position error covariance in the 
X- and Y- varies in the same way over time; while xxP  
and yyP  are proportional with 3t and Pψψ  is propor-
tional with t . Furthermore, the relations of Eq. (35) are 
always positive and are related to 2

aσ  and 2
ωσ  respec-

tively. Therefore, the position error covariance does not 
depend on the path. This claim is illustrated in Figure 4. 
The figure depicts the real and dead-reckoning-based 2D 
position of a quadrotor that follows a predefined path via 
several waypoints. Similarly, the ellipse of the position 
error covariance is depicted over the flight time. Based 
on the presented results, it is concluded that the growth 
of the covariance ellipse of position error in the vehicles 
equipped with the IMU does not depend on the path. 
However, the position error covariance in the ground 
mobile robots equipped with the encoder, depends on 
the path and varies with the path direction.

2.2. Comparison to the mobile robot

Similar to the previous approach, the position error co-
variance of a mobile robot, equipped with an encoder, 
can be solved as follows:
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 

= σ +

, (36)

where XV  and yV  are components of robot velocity vec-
tor in the reference coordinate system, Φ̂  indicates the 
estimated heading angle, and lastly ωσ  and Vσ  stand 
for the standard deviations of the rotational and transla-
tional velocities of the robot, respectively. Assuming that 
the initial error state vector is zero, Eq. (36) is rewritten 
as follows:
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 (37)

Figure 5 shows the 2D trajectory of three mobile ro-
bots moving randomly. As depicted in figure 5 the posi-
tion errors grow due to the dead reckoning. In Figure 5, 
the ellipse of the position error covariance is depicted 
alongside the trajectory, as well. As expected from the re-
lations of Eq. (37), position error covariance of a ground 
mobile robot equipped with an encoder depends on the 
robot trajectory.
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waypoint at the 40 meters away in the x-direction
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2.3. Update step uncertainty propagation

Like the prediction/propagation step, the Riccati equation 
is used to analyze the error covariance in the update step:

1T TP AP PA GQG PH R HP−= + + − , (38)
where P, A, G, Q, and R previously were defined in Eqs. 
(9)–(23). The matrix H also consists of ijH  defined in 
Eq. (24), and here it is formed as below:

1 2
12 12
1 3
13 13

2 3
23 23

0

0

0

H H

H H H

H H

 
 

=  
 
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. (39)

It is assumed that each agent only applies the data that it 
receives directly from other agents to update its estima-
tion. Hence, by performing several algebraic operations 
in Eq. (38), based on the definitions made so far, the 
following equation is obtained:

( ) ( )1

1
,

TT

T
ii ii ii ii ii ii
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 (40)

where iiP  is the covariance sub-matrix of the thi  agent, 
ijP  is the correlation covariance sub-matrix between the 

thi  agent and thj  agent. Hence, the following relation is 
obtained via Eqs. (26)–(28):

1 7

1 7

1 7
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0 1 0

j i
ijijH H O

O
×

×

×

= − +

 
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. (41)

Substituting Eq. (41) with Eq. (40), the following rela-
tion is derived:
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The last term is the update term which includes the 
other agents covariance matrices. In other words, be-
cause of each agent’s contribution to the position error 
of the other agents, its error covariance matrix is reduced 
by the correlation covariance matrix. Assuming that the 
absolute position of the thj  agent is known and it plays 
the role of a landmark in the group, thereby the cor-
relation covariance matrix becomes zero and Eq. (42) is 
rewritten as below:

1

1

T
n

T i i
ii ii ii ii ii ii ii ij ij ij ii

j
P A P P A GQ G P H R H P−

=

= + + − ∑ . (43)

2.4. Closed-form solution to update uncertainty

To derive a closed-form solution for position error covari-
ance, the following assumptions are considered:

 – The group consists of two agents
 – The agents only move in only one dimension
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Figure 3. Difference percentage of the position error covariance 
between the accelerated and non-accelerated trajectory
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 – The cooperative navigation is only based on relative 
range measurements

 – Each agent is only equipped with an accelerometer
 – Initial position error and initial error covariance ma-
trices are zero

 – The group comprises of homogeneous agents
According to the above-mentioned assumptions, the 

equation of motion of each agent is regarded as follows:
x v
v a

=
=





. (44)

Subsequently, Eq. (44) can be rewritten in the state-
space form, for each agent, as below:
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As before, by linearizing Eq. (45), the error state equa-
tions for each agent can be obtained as follows:
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 (46)

where iA  stands for the system sub-matrix, aε  denotes 
the system noise due to the acceleration measurements, 
and iG indicates the system noise input sub-matrix. Af-
terward, the system noise covariance of each agent is 
obtained as:
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Hence, the error state equation for a two-agent system 
can be written as follows:
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The relative range between agent 1 and agent 2 meas-
ured by agent 1 can be modeled as:

( )22
2 1D x xρ = + − , (49)

where D is the cross distance between the two agents and 
is always constant according to the assumptions men-
tioned before. This measurement model is used to update 
the position estimate and the error covariance matrix es-
timations. By linearizing Eq. (49), the error measurement 
model is obtained as below:
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(50)
in which 1L  is defined as a simplification parameter re-
lated to agent 1. ν  is the measurement noise and in-
volves a white Gaussian probability density function 
(pdf). The covariance of ν  is given as below:

( ) ( ){ } 2
12 .R E t t ρ= υ υ = σ , (51)

where ρσ  is the standard deviation of the relative range 
measurement noise. Based on the measurements of the 
agent 1 and using Eq. (38), the covariance matrix of the 
system, is obtained as:
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The equations for the covariance sub-matrices in Eq. 
(52) are separately given as below:
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(53)
By substituting the parameters in Eq. (53) and simpli-

fying it, the following equation is obtained:
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where xxP  and vvP  are the covariance matrices of the 
position and velocity errors, respectively. For better com-
prehension and more abstraction, the following param-
eters, 11L P= , 12M P= , and 22N P=  are defined. There-
fore, based on these definitions, Eq. (54) is re-shaped as 
follows:
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Consequently, according to the previous analysis, the 

growth of the position error covariance in the vehicles 
equipped with an IMU, does not depend on the path. 
Hence, it can be assumed that the error covariance of 
both agents, yields approximately the same relations as 
a function of time; which causes the operator   L  to be 
equal with the  N  one. Based on this statement, Eq. (55) 
can be rewritten as below:
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Furthermore, in Eq. (56), there are common terms 
between the two sets of the equations ( L  and M ). By 
eliminating these terms, the following relationships are 
obtained:
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(57)
The interesting point here is that the solution obtained 

in the third relation of Eq. (57) equals with Eq. (35). In 
other words, the sum of the covariance matrix ( xxL ) 
and the correlation covariance ( xxM ) matrices equal to 
the approximate solution of the covariance propagation 
equation. By substituting 2 3 / 3xx xx aM L t= − + σ  from Eq. 
(57) with the first equation of Eq. (56), the following re-
lation emerges:

2 4
12 123 2 6
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2 4
3 9

a a
xx xv xx xx

B B
L L t L B L t

σ σ
= + − − . (58)

Likewise, by equating the first equation of Eq. (56) and 
Eq. (58), the following quadratic equation is obtained:
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(59)

By solving Eq. (59) and assuming that it has one real 
root, the unknown parameters xxL  and xxM  are derived 
as follows:
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 (60)
In short, based on the assumptions given in this sec-

tion and according to Eq. (60), the covariance of the 
position error, resulting from the implementation of the 
CNA in a group of FRs, involves the following features: it 
is proportional to the cube of time ( 3t ), independent of 
the covariance of measurement noise, and dependent on 
the covariance of the system noise (accelerometer noise). 
Also, the covariance of the agents equals the correlation 
covariance ( 11 12P P= ), while it is inversely proportional 
to the number of agents; ( ) ( ) /xx xxCN DRP P N= , where 
N  is the number of agents, subscript CN denotes “co-
operative navigation”, and subscript DR stands for “dead-
reckoning”.

3. Simulation experiments

In this section, to evaluate the performance of the pro-
posed method, a series of simulations are performed in 
the Matlab environment. The results of the 6DoF dy-
namic GNC in-the-loop simulations confirm the theo-
retical analysis, deliberated in the previous sections. In 
the conducted simulations, a tri-agent group of FRs is 
considered to fly in a 20*20*15 (m) space. Employing 
the GNC system, each of the FRs follows a pre-planned 
path through arbitrarily chosen waypoints. As men-
tioned before, in this work, the agents are quadrotors 
and the simulation environment encompasses a 6DOF 
dynamic model of them. Each FR is equipped with an 
IMU in the grade of “control” class and white Gaussian 
noise (WGN) is used as a measurement noise model of 
the sensors. Accordingly, the standard deviation of the 
acceleration measurements noise ( aσ ) is 20.012m / s  and 
that of the rotational velocity ( ωσ ) equals 100 deg / hr. 
Likewise, the exteroceptive sensor measures the range 
and the two bearing angles, degraded by a WGN with 
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5 cmρσ =  and 4 degα βσ = σ = , while a 1-Hz update 
rate is considered in the relative measurements between 
the agents. In the following, Figures 6 and 7 present the 
actual trajectory (solid line), the dead-reckoning based 
trajectory (dashed-dotted line), and the CN (dashed line) 
for the FRs. In Figure 6, the agents have crossed a curved 
trajectory ,while in Figure 7, they have crossed a hexagon 
one. In 6 and 7 figures, the left sub-figure depicts the 2D 
trajectory and the right one illustrates the 3D path at 
different altitudes (1.5, 2.5, 3.5 (m)).

Since all measurements are relative and there isn’t any 
absolute position data, the CN merely improves the rela-
tive geometry between the agents. As expected, if the ini-
tial absolute position data is available accurately, the CN 
can enhance overall position error. In the following, the 
analytical outcomes obtained in the previous section, are 
validated by the 6DoF dynamic GNC in-the-loop simula-
tions. In these numerical experiments, the agents employ 
only the relative range measurements among each other. 
Observations indicate that the position error covariance 
is inversely proportional to the number of agents.

Afterward, Figure 8 depicts the position error covari-
ance vs. time for different number of agents, obtained 
from the EKF covariance matrix, during the GNC in-
the-loop simulations. As expected, the position error co-
variance grows with the cube of time. Correspondingly, 
as the number of FRs increases, the growth rate of the 
covariance decreases. To validate the theoretical solution 
obtained in Eq. (60), we substitute 100 t = (s) in the fol-
lowing relationship:

2 3

3
a

xx
t

P
N

σ
≅ , (61)

where N is the number of FRs. In the following, Table 2 
presents the results pertaining to the numerical experi-
ments. It is worth mentioning that, the values deter-
mined by Eq. (61) in Table 2, are the same as those of 
the curves at 100t = (s), attainable in Figure 7.

Table 2. The position error covariance in t = 100s for different 
number of agents

Cov / Num of Agents 1N = 3N = 6N = 10N =

( ) ( )2100   xxP m 48 16 8 4.8

Compared with the case of the MR group (Mourikis 
et  al., 2006), as depicted in Figure 8, the covariance of 
position error grows more rapidly with time. Also despite 
the analytical results in an MR group (Rekleitis & Roume-
liotis, 2003), in an FR one equipped with the IMU, the 
position error covariance does not depend on the noise 
characteristics of the relative position measurements.

More on the prior observations, the position error 
covariance in an FR group is independent of the trajec-
tory and grows uniformly among the agents. Actually, in 
an MR group, it depends on the trajectory of each agent 
and grows According according to the path. Therefore the 
non-uniformity property of the position error covariance 
among the agents of an MR group helps to minimize the 
navigation errors and their covariance in a CN algorithm. 
Contrarily, in an FR group, the lack of this property causes 
navigation errors to diverge much faster. These issues can 
be resolved based on the incorporation of the dynamic 
model of the vehicle inside the navigation system (Bayat 
& Atashgah, 2017; Koifman & Bar-Itzhack, 1999). In the 
proposed method, all measurements including relative 
measurements can be used to estimate the model param-
eters. By this method, an accurate estimate of the model of 
at least one agent of the group will be sufficient to increase 
the performance indices of the CN algorithm.

Conclusions

In this paper, a theoretical analysis for the position er-
ror covariance of a group of flying robots, equipped with 
an IMU and relative range and bearing angle sensors. An 
analytical formula, as the main contribution of the work, 
was derived to express the covariance of position error 
as a function of time and the noise characteristics of the 
IMU. The validations indicate that the derived relation 
(Eq. (61)) can be used to analyze and also perform trade-
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Figure 6. 2D/3D trajectory plots; (a) the 2D, and (b) the 3D curved trajectories; “*” signifies the initial position
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offs in the preliminary design phase of the CNA for a 
group of robots, equipped with inertial sensors. However, 
the simulation results exhibit that the covariance of posi-
tion error grows rapidly over time and consequently the 
CNA can’t be used in this case for long-time operations 
without absolute position information of at least one of 
the agents. Moreover, regarding the group size, smaller 
groups seem to be more effective in terms of decreasing 
the growth rate of the covariance and hence have a greater 
cost-benefit; compared with the larger groups. An inter-
esting result here is that the covariance of position error 
is approximately independent of the noise characteristics 
of the relative position measurements, while it depends 
on the size of the group and the noise covariance of the 
accelerometers. In GNSS denied condition, to promote the 
robustness and stability of the CN algorithm in a group of 
vehicles, equipped with IMU, a model-based estimation 
method is proposed as future work. In this method, some 
parameters of the agents’ dynamic model, which aren’t 
accurately available, can be estimated properly. Hence a 
model-based INS can be more accurate than the unaided 
INS and helps the CN algorithm to achieve higher per-
formance indices.
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Notations

Variables and functions
ijα  – Relative azimuth angle between ith and jth agent;
 ijβ – Relative elevation angle between ith and jth agent;

tδ  – Time step.
ijρ  – Relative range between ith and jth agent;
aσ  – Standard deviation acceleration measurement noise;
ρσ  – Standard deviation of range measurement;
vσ – Standard deviation of velocity measurement;
ωσ – Standard deviation of angular rate measurement noise;

ψ  – Attitude angles;
ω  – Angular rate vector;
a  – Acceleration vector;

e
bC  – Body to Earth frame transformation matrix;
ijd  – 2D relative distance between ith and jth agent;
ijH   – Observation matrix of relative measurement be-

tween ith and jth agent;
N  – Size of the group (Number of agents);

ijn  – Noise of relative measurement between ith and jth agent;
Pψψ  – Covariance matrix of ψ error;

iiP  – Covariance matrix of agent i;
ijP  – Cross correlation covariance matrix between ith and jth 

agent;
xxP – Covariance matrix of x- position error;
yyP  – Covariance matrix of y- position error;
dQ  – System noise covariance;
ijR  – Noise covariance of relative measurement between  

ith and jth agent;
r – Position vector;
v – Velocity vector.
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AR – Aerial Robot
CL – Cooperative Localization
CNA – Cooperative Navigation Algorithm
EKF – Extended Kalman Filter
FR – Flying Robot
GC – Guidance Control
GNSS – Global Navigation Space System
GPS – Global Position System
IMU – Inertial Measurement System
INS – Inertial Navigation System
IOD – Internet of Drone


