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Abstract. Steady-case thermal analysis plays an important role in dimensioning thermal control systems for spacecrafts 
and aircrafts. Usually a trial and error approach is used based on engineering judgement and experience. When thermal 
models become complex or there are conflicting thermal requirements, however, it becomes harder for an engineer to gain 
insight as to which design decisions will lead to better results. Numerical optimization, on the other hand, could provide a 
more robust approach for the thermal design of complex spacecraft or aircraft models. In this paper, we suggest a gradient-
based multidisciplinary optimization of thermal models where the coupled derivatives of the multidisciplinary system are 
obtained with the adjoint method. We show that in the case of steady-state thermal analysis, there is an analytic solution of 
a partial derivatives of implicit heat-transfer equation that can be used to derive total derivatives of the system. We present 
a practical application of this method by solving a small interplanetary spacecraft thermal optimization problem consisting 
of one objective, 15 design variables, and 10 constraints. We found that by using gradient-based optimization with exact 
derivatives, the best results can be achieved by exploring the design space at multiple initial starting points without major 
computational overhead.
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Introduction

The spacecraft and aircraft thermal-control system is re-
sponsible for maintaining and controlling components’ 
temperature within the required operating conditions. 
Numerical thermal analysis is one of the key methods in 
the design and performance assessment of such thermal-
control systems. Although the selection of a viable thermal 
design approach is based on engineering judgement, de-
tailed thermal analyses are always required to verify and 
refine the design. In an industrial environment, a set of 
commercial thermal analysis computer programs are typi-
cally used to accurately model the thermal environment 
by either finite difference or finite element methods. De-
pending on space mission or aircraft design requirements, 
the underlying thermal models can become quite com-
plex, with thousands of thermal nodes and a multitude of 
design points at varying boundary conditions. With the 
expansion of model complexity, it becomes harder for an 
engineer to gain insight as to which design decisions will 
lead to better results. In industrial practice, this is mostly 

done by human trial and error, however, the use of numer-
ical optimization methods could provide a more robust 
approach for thermal design.

This is especially relevant for passive thermal-control 
system design for small spacecrafts, such as CubeSats, 
which typically rely solely on the proper selection of con-
ductive and radiative material properties. Thermal-control 
challenges in aviation usually arise in hypersonic and elec-
tric aircraft design, especially concerning aircraft engine 
cooling systems and heat exchangers. Electric aircraft 
pose a unique thermal design challenge and opportunity 
for optimization in that they lack a simple way to reject 
waste heat from the power train. While conventional air-
craft reject most of their excess heat in the exhaust stream, 
this is not an option for electric aircraft (Falck et al., 2017). 
Indeed, the need for integrated thermal, power, and fuel 
management systems modeling for the design of modern 
composite aircraft has been highlighted in the literature 
(Bodie et al., 2010).

Despite the potential advantages offered by numeri-
cal optimization of spacecraft and aircraft thermal design, 

AVIATION
ISSN: 1648-7788 / eISSN: 1822-4180

2020 Volume 24 Issue 3: 105–116

https://doi.org/10.3846/aviation.2020.13045

*Corresponding author. E-mail: laurynas.maciulis@vgtu.lt

Copyright © 2020 The Author(s). Published by Vilnius Tech Press

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9774-6770
https://orcid.org/0000-0003-1769-6537
https://doi.org/10.3846/aviation.2020.13045


106 L. Mačiulis, R. Belevičius. Gradient-based optimization of spacecraft and aircraft thermal design

there is a lack of research on this subject in the scientific 
literature. Some researchers have successfully solved the 
inverse design of the spacecraft thermal-control system by 
using a meta-heuristic generalized extremal optimization 
algorithm. The design solutions found were nonintuitive 
ones that were unlikely to occur as possibilities for a hu-
man designer (Galski et al., 2007). Others have suggested 
methodologies based on deterministic optimization algo-
rithms that use finite difference approximation of the ob-
jective function gradient (Chari, 2009; Stout et al., 2013). 
Escobar et al. (2016) used genetic algorithms to automate 
the design of a satellite passive thermal control system, 
while Wang et  al. (2002) investigated an aircraft engine 
cooling problem combined with a finite element solution 
of heat conduction using an optimization technique based 
on the Adaptive Response Surface Method.

Global optimizers based on evolutionary algorithms 
offer an advantage as they do not rely on gradients and 
are therefore easy to implement with black box models. 
Without gradients, however, algorithms must rely on sam-
pling the design space at a cost that grows exponentially 
with the number of design variables, and in practice, this 
becomes prohibitive when there are more than 10 design 
variables (Hwang et al., 2013). The same problem is faced 
in response surface methods, otherwise known as sur-
rogate models, which rely on sampling the design space 
of often expensive analysis codes (Forrester et al., 2008). 
Furthermore, global optimizers have difficulty handling 
constraints, whereas thermal design problems are domi-
nated by temperature constraints. Similar disadvantages 
are inherent in finite-difference-based gradient optimizers. 
In their simplest form, these methods require repetition of 
the system analysis for every perturbed design variable, 
meaning it may be prohibitively costly, particularly if the 
system analysis is nonlinear and/or iterative (Sobieszczan-
ski-Sobieski, 1990). Finite-difference approximation of the 
gradient is also prone to inaccuracy due to computational 
noise and truncation errors that may lead to convergence 
issues.

Previous research has also considered thermal design 
to be a single discipline problem, but in most cases it is 
multidisciplinary in the context of other sub-systems. We 
suggest a gradient-based method that uses exact analytic 
derivatives of the underlying thermal analysis model and 
accounts for coupling with the electrical power supply and 
attitude sub-systems of a spacecraft. In this paper, we fo-
cus on spacecraft thermal design, but the same principles 
could also be applied to aircraft.

1. Principles of spacecraft thermal analysis and 
design

The objective of all thermal-analysis codes is the so-
lution of the general heat-transfer equation. One way to 
determine the solution is to approximate the physical sat-
ellite model using a finite-difference model. The nodes or 
sub-volumes are assumed to be isothermal, and physi-

cal properties are assumed to be constant within a node. 
Some heat-transfer books refer to finite-difference-node 
meshes as lumped-parameter representations (Gilmore, 
2002). The energy equation for each node i can be written 
as (Meseguer et al., 2012):

, , , ,       i sun i alb i planet i dis i
TC Q Q Q Q
t

∂
= + + + +

∂

( ) ( )4 4

1 1
 –  – 

n n

ij j i ij j i
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where T is temperature in Kelvin scale; t is time; 
, ,  , ,   ,sun i alb i planet iQ Q Q  are external Sun, albedo, and 

planetary infrared heat fluxes, respectively; , dis iQ is the 
internally dissipated power; and ijGL and  ijGR are the 
conductive and radiative coupling links between nodes i 
an j, respectively. When all nodes in the model are con-
sidered, one obtains a system of ordinary differential equa-
tions that can be solved to give the time evolution of the 
temperature of each node. For thermal-control system 
dimensioning, however, steady-state calculations for the 
worst-case scenarios are typically performed (Meseguer 
et al., 2012). This is done by setting the left-hand side of 
equation (1) to zero, thus obtaining a system of algebraic 
nonlinear equations. This system of equations can be re-
duced to the matrix form:

4 { }    { }   { }  0 T T Q⋅ + ⋅ + =GL GR , (2)

where T is a column vector of node temperatures, Q is a 
column vector of node external heat fluxes, GL is a linear 
conductor matrix, and GR is a radiative conductor matrix. 
Each element in linear conductor matrix is given by:

 ,ij
kAGL
L

=  (3)

where k is the thermal conductivity, A is the cross-section-
al area through which the heat flows, and L is the distance 
between two adjacent nodes i and j. Similarly, the radiative 
conductor elements are given by:

     ij i j i ijGR A F= σ⋅ ⋅α ⋅ ⋅ , (4)

where s is the Stefan-Boltzmann constant,   is infrared 
emissivity, a is infrared absorptivity, A is node area, and 
ijF  is the geometric view factor. The geometric view factor 

shows which fraction of the heat radiated by the surface i 
is directly incident on a surface j (Gilmore, 2002).

We will refer to equation (2) as the direct problem as 
it is used to solve node temperatures by knowing the ele-
ments of GL, GR, and Q. The thermal engineer, on the 
other hand, is faced with an inverse problem:

 Find  X
 Subject to ,  ,   i lb i i ubT T T< <

,  ,   i lb i i ubx x x< < , (5)

where X is the vector of design variables belonging to 
the feasible domain specified within the upper and lower 
bounds denoted by xub and xlb, respectively, while Tub 
and Tlb define the upper and lower temperature bounds 
defined by thermal requirements, respectively. Any 
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parameter that influences the residual value of equation 
(2) can be considered as a design variable.

The overall process of solving the inverse problem (as 
shown in Figure 1) is based on trial and error as well as 
engineering judgement. It is further complicated by the 
fact that multiple design points need to be considered 
according to the specific space-mission scenario. High 
fidelity thermal models coupled with varying boundary 
conditions result in very large design spaces that could 
reach thousands of design variables (Hwang et al., 2013). 
Numerical optimization could enable a more robust ap-
proach to solving the inverse problem and provide the de-
signer with more insight into where a better solution lies.

2. Formulation of the multidisciplinary thermal 
optimization problem

Instead of looking into thermal design as a single-disci-
pline problem, we suggest formulating it within a mul-
tidisciplinary context. By looking into equation (1), we 
can see that it contains inputs from external heat fluxes 
and heat dissipation from equipment, meaning that the 
thermal problem is inherently coupled with the spacecraft 
attitude and power disciplines. This formulation would 
also make it easy to integrate the thermal discipline into 
a multidisciplinary optimization framework of the whole 
satellite as a system. Following the mathematical notation 
suggested by Martins and Lambe (2013), we formulate a 
thermal problem as a multidisciplinary feasible (MDF) 
optimization architecture in the form of:

 
minimize

 
( )( ) , , f x y x y

 with respect to x

 subject to ( )( )0 , ,   0c x y x y ≤

( )( )0  0  , , , ,   0i i i i j ic x x y x x y ≠ ≤  for i = 1…N , (6)

where f is the objective function, c is the constraint func-
tion, x are design variables, y are state variables (e.g. tem-
perature), index i means local variables or constraints that 
affect only one discipline of a total of N disciplines, and 
index 0 means shared variables or constraints that affect 
more than one discipline. The objective function can be 
of any sort of scalar function related to a specific satel-
lite mission, e.g. minimizing the power consumption or 
maximizing the data rate for communication links. The 
constraint function for the thermal discipline is certainly 
the upper and lower bounds of the component’s operating 
and/or survival temperature. The MDF architecture sim-
ply means that with each optimizer iteration, the system 
has to be solved as a whole to return a consistent set of 
coupling variables. We choose MDF architecture here be-
cause it always satisfies the consistency constraints and is 
easiest to understand from an engineering point of view. 
The reader is referred to the paper by Martins and Lambe 
(2013) for more details on multidisciplinary optimization 
architectures.

Thus, the general MDF formulation for the thermal 
problem could look like this:

 minimize ( )f X

 with respect to
 { }, , , , , , outX k P= α Φ Ψ Ω

 subject to , ,    i lb i i ubT T T< <

   –  –  0el dis outP Q P∑ ∑ ∑ = , (7)

where the total vector of design variables X consists of 
vectors of nodes’ emissivity   ; absorptivity a; thermal 
conductivity k; components’ power output outP ; and sat-
ellite attitude Euler angles , , and Φ Ψ Ω  such that for each 
node i:

i0 <  < 1

0   1 i<α <

, ,    i lb i i ubk k k< <

, ,
     

i lb i i ubout out outP P P< <

0  , ,   2<Φ Ψ Ω< π . (8)

The last equation in (7) defines the equality constraint 
for conservation of energy where total input electrical 
power from solar arrays Pel has to equal the sum of the 
dissipated heat and output power of the sub-systems. 
The output power is usually in the form of mechanical or 
electromagnetic energy, which is used to power up elec-
tronic instruments and actuators or charge batteries. The 
overall structure of the multidisciplinary thermal problem 
and data connections between disciplines are displayed in Figure 1. Spacecraft thermal design process
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the form of XDSM (Lambe & Martins, 2012) in Figure 2. 
The data flow in the Figure 2 is shown as thick gray lines. 
Components take data inputs from the vertical direction 
and output data in the horizontal direction. The thin black 
lines show the process flow, with numbers showing the 
order in which the components are executed. The thermal 
optimization problem is composed of three disciplines, 
which are shown as block components in Figure 2:

1) explicit external heat-flux function;
2) explicit power function;
3) implicit temperature function.
The heat-flux function calculates the absorbed heat 

flux from external sources, i.e. the Sun, albedo, and plan-
etary infrared, which depend on satellite attitude angles 

, , and Φ Ψ Ω . The power discipline takes the absorbed 
fluxes and component power outputs as inputs and cal-
culates internally dissipated heat flux Qdis and generated 
electrical power from solar arrays Pel. Finally, the tem-
perature discipline assembles matrices GL (eq. 3) and GR 
(eq. 4) and solves the direct problem (eq. 2) as a system 
of nonlinear equations. The functions block calculates the 
objective and constraints, which are fed to the optimizer. 
The solver is required to converge the residuals of equa-
tion (2) to zero and to iteratively solve the multidisci-
plinary coupled problem (solver loop from steps 1 to 5).

Generally, all disciplines could be coupled through 
temperature-dependent properties, e.g. solar absorptivity, 
and therefore the external heat flux might depend on tem-
perature. Similarly, solar cell efficiency and thus generated 
electrical energy also depend on temperature. As shown in 
Figure 2, the coupling temperature variable is output from 
the temperature discipline and fed backwards as an input to 
the power and heat-flux disciplines, thus forming a cycle.

3. Obtaining the total derivatives of the coupled 
thermal problem

To solve the constrained thermal optimization problem 
defined in section 2 using a deterministic algorithm, the 
total derivatives of the objective and constraints with 
respect to the design variables are required. Following 

a convention from Gray et al. (2019), we note that total 
derivatives are defined as the derivatives of the model 
outputs with respect to the model inputs, while the de-
rivatives of the specific discipline outputs with respect to 
its inputs are considered to be partial derivatives. As men-
tioned previously, using finite differences to approximate 
total derivatives is both inaccurate and computationally 
inefficient, especially in large-scale models. Obtaining the 
total analytic derivatives of a coupled multidisciplinary 
model might seem a non-trivial problem, especially if the 
model contains implicit functions, such as in our case. 
Fortunately, there has been a lot of progress recently in 
deriving efficient methods for calculating analytic total de-
rivatives (e.g. Martins & Hwang, 2013). In this work, we 
adopt the MAUD architecture, which was developed by 
Hwang and Martins (2018) and practically implemented 
in an open-source multidisciplinary analysis framework 
called “Open-MDAO” (Gray et al., 2019).

Following the problem formulation in (6), the deriva-
tive of the objective or constraint with respect to design 
variable x is:

     df dyF F
dx x y dx

∂ ∂
= +
∂ ∂

, (9)

where f (which is a quantity of interest) is distinguished 
from implicit function F, which computes f. The key to 
solving this equation is to obtain the only non-partial de-
rivative dy

dx
, which captures the change in the converged 

values of y with respect to x. Observing the implicit de-
pendence by R(x, y) = 0, one obtains a linear system to 
solve dy

dx
:

   –dyR R
y dx x
∂ ∂

=
∂ ∂

. (10)

This is called a direct method. In addition, by substi-

tuting dy
dx

 from equation (10) to equation (9), one obtains 

the adjoint version:
–1

   –   ,df F F R R
dx x y y x

∂ ∂ ∂ ∂
=
∂ ∂ ∂ ∂

 (11)

where the so-called adjoint vector Ψ  is found again by 
solving a linear system of equations:

  
T TR F

y y
∂ ∂

Ψ=
∂ ∂

. (12)

The direct method requires solving equation (9) n 
times, where n is the number of variables, whereas the 
adjoint method is proportional to the number of outputs 
and independent of the number of inputs. The latter fea-
ture is advantageous for large models with a high number 
of design variables. MAUD provides the mathematical and 
algorithmic framework that automatically computes the 
coupled derivatives of the multidisciplinary system via a 
generalized form of the direct or adjoint method. The total 
derivatives are computed in a two-step process:Figure 2. MDF architecture of thermal problem
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1) compute the partial derivatives of each component, 
and

2) solve a linear system of equations that computes the 
total derivatives (9) or (11).

Therefore, by leveraging the above mentioned tech-
nique, we can obtain the total derivatives of the thermal 
problem by providing just the partial derivatives of each 
discipline. Here, we provide the exact derivatives of the 
matrix equation (2) with respect to all of it variables:

( )3  4   { }R diag T
T
∂

= + ⋅ ⋅
∂

GL GR ; (13)

{ }   R T
GL
∂

= ⊗
∂

 I ; (14)

( )4  { }   R T
GR
∂

= ⊗
∂


I ; (15)

  f I
Q
∂

=
∂

; (16)

where we refer to the residual function of equation (2) as 
R. The partial derivatives of the other disciplines are ap-
plication specific and examples will be given in the next 
section.

4. Practical application of gradient-based 
spacecraft thermal model optimization

4.1. Description of a thermal model

To demonstrate the use of the technique described in section 
3, we present an example spacecraft shown in Figure 3(a).

It is a nano-spacecraft that closely resembles a so-
called CubeSat standard (Heidt et  al., 2000). The space-
craft consists of a cube-shaped body with a side length of 
88 mm and three solar arrays. One of the arrays is fixed 
to the body, while the remaining two arrays are deployed 

after the spacecraft is launched into space. The mission 
objective is to design this spacecraft for a very wide range 
of thermal conditions. Therefore, we assume that it must 
survive the thermal environment expected during an in-
terplanetary mission orbit with an aphelion at 3 AU, peri-
helion at 1 AU, and zero inclination. As the solar heat flux 
follows the square law of distance, spacecraft receive nine 
times less heat from the Sun at 3 AU compared to condi-
tions in low Earth orbit. The blue rectangles in Figure 3(b) 
represent spacecraft sub-systems. The requirement for 
thermal design is to keep sub-system temperatures within 
an allowable range (shown in Table 1), while maximizing 
sub-system 1 power allocation during the mission.

A simple lumped-parameter representation of this 
spacecraft’s thermal model is shown in Figure 3(b). The 
model is cut through the YZ plane to show the internal 
view, and different colors show the surface optical proper-
ties of different parts of the geometry. The initial optical 
properties are listed in Table 2. The model is discretized 
into rectangular shells, with each shell representing an in-
dividual thermal node. The node numbers of each shell 
are shown in Figure 3(b). Each deployable solar array con-
sists of two nodes representing the front (nodes 7, 8) and 
back (nodes 6, 9) surfaces of the panel. The nodes or sub-
volumes are assumed to be isothermal, and physical prop-
erties are assumed to be constant within a node. The body 
of the spacecraft is made of aluminum, while solar arrays 
and sub-systems are composed of PCBs. For steady-case 
thermal analysis, the thermal conductivity of the materi-
als needs to be defined. We set the thermal conductivity 
of aluminum and PCB to 130 and 20 –1 –1Wm K , respec-
tively. The remaining linear conductors connecting differ-
ent nodes are shown in Figure 3 as jagged lines. Conduc-
tors 4–10 and 1–15 represent mechanical spacers through 
which PCBs are attached to structure. Conductors 5–11, 
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Figure 3. Spacecraft geometry (a) and thermal model (b). Jagged lines in (b) show linear conductors between thermal nodes.  
Back surfaces of deployable solar arrays (nodes 6 and 9) are covered with MLI
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5–7, and 7–8 represent solar array hinges. We assume 
that the sub-systems are well insulated with MLI and that 
the internal body surface is covered with a low emissivity 
finish so that the dominant heat path from/to the sub-
systems is through conduction instead of radiation. In this 
model, the sides of the body cube are assumed to be fused 
together without any thermal contact resistance, but the 
conductors are not shown in Figure 3(b) for the purpose 
of clarity.

4.2. Discipline models

As explained in section 2, the multidisciplinary thermal 
problem consists of heat-flux, power, and temperature dis-
ciplines. We apply the same topology to the example prob-
lem presented here, with the distinction that only power 
and temperature will be coupled. The heat-flux discipline 
calculates the incident solar radiation flux absorbed by a 
satellite surface, given by:

      Sun sQ q A= ⋅ ⋅α , (17)

where A is surface area and  sq  is incident solar flux den-
sity, calculated by:

–2    cos( ) s sq G d= ⋅ φ ⋅ , (18)

where d is the distance from the Sun in AU, f is the angle 
between incident Sun ray and surface area normal, and 
the average value of the solar constant Gs at one AU dis-

tance is 1367 
2

W
m

 (Gilmore, 2002). Note that the angle f 

needs to be determined for every external surface of the 
spacecraft and will depend on the design variable F. The 
dependence of these variables might be determined ana-
lytically if the model geometry is simple, but in general, 
a graphical ray-tracing or rendering algorithm is used for 
more complex geometries to calculate qs directly. In case a 
ray-tracing algorithm is used, however, the resulting out-

put is not a continuous function, but an array of outputs at 
specified conditions. To smooth out the data, some kind of 
surrogate model is typically used, e.g. B-spline interpolant 
(Hwang et al., 2014).

The power discipline takes the absorbed fluxes and 
component power outputs as inputs and calculates the in-
ternally dissipated heat flux disQ  and generated electrical 
power from solar arrays elP . First, the electrical power is 
calculated as

     ,el Sun
sc

P Q η
= ⋅

α  
(19)

where h is the overall input efficiency given by the prod-
uct of electrical cell efficiency eη  and MPPT converter 
efficiency mpptη :

     e mpptη=η ⋅η , (20)

and scα  – is the solar absorptivity of the solar cell. We 
note that eη  depends on temperature, which is explained 
later. The dissipated heat in the solar arrays is then given:

,    –     1 – dis sa sun el Sun
sc

Q Q P Q
 η

= = ⋅  α 
. (21)

For internal sub-systems, we just assume that all elec-
trical power is converted as heat:

int
   dis outQ P= , (22)

Although in general cases, this depends on the nature 
of the specific sub-system component. Finally, the tem-
perature discipline assembles matrices GL (eq. 3) and GR 
(eq. 4) and solves the system of nonlinear equations to 
obtain the temperature of each thermal node. For radia-
tive conductor GR, two cases can be distinguished:

1. Thermal radiation exchange of external surfaces 
with a deep space environment.

2. Thermal radiation exchange between surfaces inside 
the spacecraft.

In case of external radiation, equation (4) simplifies to:

    ij i i ijGR A F= σ⋅ ⋅ ⋅ . (23)

Unfortunately, for internal radiation, multiple reflec-
tions need to be accounted for to achieve accurate results 
of radiative conductors. This requires GR values to be 
recalculated for every surface in a spacecraft enclosure 
whenever emissivity changes. Since radiative solvers rely 
on Monte Carlo ray-tracing algorithms for view factor cal-
culation, gradient-based optimization of internal surface 
emissivity becomes problematic. Practically, this is not an 
issue, however, because external radiation has a dominant 
effect on thermal equilibrium. Only optimization of exter-
nal surface optical properties is considered in this paper.

As we need to solve the thermal model for two differ-
ent boundary conditions, equation (2) has to be modified 
to obtain a solution at multiple design points:

4          0GL T GR T Q⋅ + ⋅ + = , (24)

where T and Q are matrices when each column represents 
a single design point. The size of T and Q is n x m, where 

Table 1. Thermal requirements of the sub-systems  
(source: author, 2020)

Sub-system 
number

Minimum  
temperature °C

Maximum  
temperature °C

1 –10 +80
2 –40 +85
3 –40 +85
4 0.0 +45

Table 2. Surface optical properties

Surface finish Solar 
absorptivity

Infrared 
emissivity

Solar cells 0.91 0.89
MLI 0.035 0.14
Gold-plated aluminum 0.02 0.19
Anodized aluminum 0.11 0.50
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n is the number of thermal nodes and m is the number of 
design points. In our example problem, n = 15 and m = 2. 
Note that GL and GR are matrices of size n x n.

As mentioned previously, the temperature and power 
disciplines are coupled because the electrical efficiency of 
a solar cell depends on temperature. This dependency can 
be estimated by either using an electric solar cell model 
or by approximating experimental data. Here, we follow 
a second approach by applying a linear approximation to 
the experimental data of AZUR SPACE triple-junction so-
lar cells, as provided in Baur et al. (2017). We assume that 
the heat-flux discipline is not coupled and can be executed 
sequentially with no iteration.

The overall MDF architecture of the example problem 
is shown in Figure 4. Here, we use a nonlinear iterative 
Newton solver to converge the coupled power and tem-
perature discipline group by driving the residuals of the 
nonlinear system of equations to zero. The multidiscipli-
nary thermal model was implemented in an open-source 
multidisciplinary analysis framework called OpenMDAO 
(Gray et al., 2019), which focuses on supporting gradient-
based optimization with analytic derivatives.

4.3. Evaluation of thermal solver accuracy

The assumption in this analysis is that external radiation 
can be modeled with equation (23), i.e. there are no re-
flections of infrared radiation. For the considered example 
with deployable solar arrays, this assumption is of course 
no longer true due to possible reflections from deployable 
array back surfaces. To test the effect of reflections and the 
overall accuracy of the thermal solver, the model was run 
for varying infrared emissivity of CubeSat surfaces 6, 9, 
and 14. Other thermal properties were kept constant. The 
results were compared with those obtained for the same 
model in the Esatan-TMS commercial thermal analysis 
program, which is a standard spacecraft thermal analy-
sis tool used in the European Space Agency. Results are 
summarized in Figure 5. The maximum measured abso-
lute error is 1.63 °C at surface emissivity of 0.10. The error 
is positive as expected because in reality, additional re-

flections cause an increase in the total radiation exchange 
factor from associated geometry to deep space. This causes 
larger temperatures to be reported in OpenMDAO than 
there actually is. As the emissivity is decreased to lower 
values, the effect diminishes because of relatively lower 
heat flux compared to other satellite surfaces. As expected, 
increasing surface emissivity decreases the errors because 
in this case, the radiation exchange factor approaches the 
value given by equation (23).

4.4. Set-up of the optimization problem

The optimization objective is to maximize the power al-
location to sub-system 1 by changing the values of the 
optical properties of anodized aluminum, thermal con-
ductance between sub-systems and structure, thermal 
conductance of solar panels hinges, the power allocation 
to sub-system 4, and the attitude yaw angle F around 
spacecraft body axis Z. The angle F changes the orienta-
tion of the spacecraft with respect to the Sun, where 0 
angle corresponds to the Sun vector coincident with the Y 
body axis. The inequality constraints for the problem are 
the upper and lower temperature bounds listed in Table 1. 
In addition, an equality constraint for energy conservation 
has to be complied with. The problem formulation is sum-
marized in Table 3.

The design variables for power allocation and yaw an-
gle as well as constraints need to be parametrized with re-
spect to different design points. As mentioned previously, 
in this example, we have to solve the problem at two de-
sign points: the hot case at 1 AU distance from the Sun 
and the cold case at 3 AU distance from the Sun. Emissiv-
ity is optimized for the whole external surface because its 
effect does not depend on satellite attitude. The absorptiv-
ity for node 11 is not optimized as this side is shadowed by 
a body solar array. To comply with the equality constraint, 
we allow the optimizer to freely choose the amount of 
electrical power allocated to sub-systems 1 and 4 and set 
the remaining unused electrical power term as dissipated 
heat in the structure. This feature is required to limit the 
heat dissipation in sub-systems if they get too hot.
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Figure 4. MDF architecture of example thermal problem
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The SLSQP was selected as the gradient-based optimiza-
tion algorithm as it can minimize a function of several 
variables with any combination of bounds, equality, and 
inequality constraints. OpenMDAO implementation of 
SLSQP was originally implemented by Kraft (1988).

4.5. Optimization results

First, the performance of the analytic total derivative com-
putation was tested on varying thermal-model mesh den-
sity by increasing the number of nodes from 15 to 73 and 
225 (Figure 6). As can be seen from Figure 7(a), the compu-
tation time of total derivatives increases almost linearly with 
mesh density. As suggested by theory, however, the compu-
tation time does not depend on the number of design vari-
ables, as seen in Figure 7(b). Increasing mesh density also 
affects the accuracy of the solution, e.g. the relative change 
of temperature of sub-system 1 is –9% (73 nodes) and –4% 
(225 nodes) with successive mesh refinement.

To avoid sub-optimal solutions when the optimizer 
gets trapped in local extremum, the model was run start-
ing with different initial values. The baseline initial solu-
tion was obtained starting with the initial values listed 
in Table 4; after that, the LHS method was used to ob-
tain equally distributed samples of starting input vari-
able values. The model with 73 thermal nodes in Figure 
6 was used. The number of samples was increased until 
no improvement in objective function value was observ-
able. The optimized design variable values for the initial 
local and global solutions are shown in Table 4 and cor-
responding temperatures are shown in Figure 8. As can 
be seen from Figure 9, the best solution is obtained when 
the number of initial variable samples is increased to 30. 
This could be expected from a gradient-based optimizer 
and suggests that the designer should be aware of this 
limitation.

It is evident from the results in Table 4, however, that 
even the local solution provides a hint to the designer 
about the direction of improvement. Mainly, by increas-
ing the angle F during the hot case and decreasing the 
absorptivity of body surface, the satellite absorbs less heat 
from the Sun and more power can be dissipated in sub-
system 1 without it overheating, even though the total 
electrical power input is reduced. The evolution of objec-
tive and constraint violation values for local and global 
solution optimizer runs are shown in the Figure 10. Con-
straints are aggregated for both design points, positive val-
ues indicate that the constraint is violated. Temperature 

Table 3. Example optimization problem

Variable/function Units Description Quantity

maximize 2

,1
1

iout
i
P

=
∑

W The sum power of sub-system 1 at two design points 1

with respect to 0   1 < < – Emissivity of external body surface (nodes 10–15) 1

12 0  1 <α < – Absorptivity of body side X- (node 12) 1

 0.25    237spacerk< < –1 –1Wm K
 Conductivity of spacers connecting nodes 4–10, 1–15 2

 
 0.004   0.1hingek< <  

–1WK
Conductance of hinges connecting nodes 7–8, 5–7, and 
5–11

3

 0.25   7outP< < W Power allocation to sub-systems 1 and 5 2 x 2

0.25   7disQ< < W Unused power dissipated as heat on body structure 1 x 2

0    
2
π

<Φ<
rad Yaw attitude angle with respect to Sun vector 1 x 2

Total number of design variables 15
subject to

, ,    i lb i i ubT T T< < Temperature constraints from Table 1 4 x 2

 –  –  0el dis outP Q P∑ ∑ ∑ = Conservation of energy constraint 1 x 2

Total number of constraints 10

 n = 225 n = 73 n = 15
Figure 6. Varying fidelity of thermal model mesh, where n is the 

total number of thermal nodes. Deployable solar arrays are meshed 
identically as fixed array (blue), but are not shown for clarity
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indices indicate sub-system numbers, lb – lower bound, 
up – upper bound. Only 10 function evaluations were re-
quired to achieve a local extremum during the initial run 
(Figure 10a), whereas approximately 50 were required for 
a global solution (Figure 10b). By comparing Figures 10a 
and 10b, one can see that although the initial violation of 
constraints for the best run was much higher, it was still 
possible to achieve constraint feasibility. In fact, from a 
total of 100 optimization runs, the constraint feasibility 
was not reached only once within a given iteration limit 
of 70 iterations. Th is suggests that the gradient-based 
optimizer and suggested MDF architecture are robust 
in terms of nearly always providing the designer with a 
feasible solution.

(a) (b)

Figure 7. Time for computing total derivatives of objective and constraints with respect to design 
variables for (a) varying model fi delity and (b) varying number of design variables 

(platform: Intel Core i5-5300U)

Figure 8. Initial and optimized temperatures. Sub-system 4 
temperature at 3 AU aft er optimization is zero

 (a) (b)

Figure 9. Evolution of best objective value with (a) number of samples and (b) plot of all objective results
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Table 4. Initial and optimized values of design variables 
(vector variables shown in brackets)

Design 
variable Initial values

Optimized values

Initial 
optimizer run

Best solution 
optimizer run

 0.11 0.94 0.71

12α 0.5 0.07 0.07

, 4 10spacerk − 6.7 2.88 6.33

,1 5spacerk − 6.7 2.96 1.83

,7 8hingek − 0.02 0.1 0.1

,5 7hingek − 0.02 0.1 0.1

,5 11hingek − 0.02 0.004 0.1

,1outP [0.3, 0.3] [0.51, 0.4] [1.17, 0.62]

, 4outP [0.25, 0.25] [0.25, 0.46] [0.25, 0.25]

disP [0, 0] [5.75, 0] [0.25, 0]

Φ [0, 0] [10.5, 0] [77.2, 0]

Objective function value 0.91 1.79

Conclusions

In this paper, we have presented MDF architecture for the 
multidisciplinary analysis and optimization of spacecraft  
thermal design. Th e architecture consists of three heterog-
enous computational models: external heat-fl ux, sub-sys-
tem power allocation, and steady-case heat transfer. Th e 
multidisciplinary formulation of the problem facilitates 
the integration of thermal design into the overall space-
craft  design process by capturing the dependency of the 
thermal model on other disciplines. We then showed how 
to derive analytic total derivatives of the coupled com-
putational model using the adjoint method. It was found 
that the model results agreed well with those obtained in 
Esatan-TMS thermal analysis soft ware. Th e worst case 
absolute and relative errors for a CubeSat model with so-
lar arrays were below 1.63 °C and 1.2%, respectively. Th e 
cause of the error can be mainly attributed to the refl ec-
tions from deployable geometry that are not accounted 
for in the integrated OpenMDAO model. By using this 
method together with the SLSQP optimization algorithm, 
we solved a small interplanetary spacecraft  thermal opti-
mization problem consisting of one objective, 15 design 
variables, and 10 constraints. Newton’s method was used 
to converge the coupled nonlinear steady-case heat trans-
fer and power discipline models.

Th e optimization routine was repeated for a varying 
number of design space samples obtained using the LHS 
method. Th e best objective function solution was obtained 

(a) (b)

Figure 10. Optimization progress of objective function and temperature constraint (in Kelvin scale) 
violations for (a) the initial optimizer run and (b) the best solution optimizer run. 
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when the number of initial variable samples was increased 
to 30, which resulted in 100% improvement compared to 
the initial solution. No improvement was observed by in-
creasing the number of samples above 30. Due to the ef-
ficient computation of total derivatives, all 30 samples were 
run and the best solution was obtained in less than half an 
hour on an Intel Core i5-5300U processor for a lumped-pa-
rameter thermal model consisting of 73 nodes. It was noted 
that even given a sub-optimal solution, the optimization re-
sults provided a hint to the designer about the direction 
of improvement. We think this feature of MDF solution 
architecture and gradient-based optimization is beneficial 
because in nearly every case, the optimizer returns a feasible 
solution regardless of the outcome of the optimization. In 
fact, we observed that from a total of 100 optimization runs, 
the constraint feasibility was not reached only once within 
a given iteration limit of 70 iterations.

We further demonstrated that the adjoint method can 
compute analytic total derivatives of the computational 
model regardless of the number of design variables, which 
is relevant for models containing many design variables. 
The cost of computing total derivatives does depend on 
the size of the problem though. In our case, by varying 
thermal model mesh density from 15 to 225 lumped-pa-
rameter thermal nodes, we observed almost a linear in-
crease in derivative computation time from 0.1 s to 3.5 s. 
We believe that the gradient-based optimization of mul-
tidisciplinary thermal models presented in this research  
work could find a practical application in spacecraft or 
similar aerospace system design tasks containing large 
numbers of design variables and conflicting thermal re-
quirements.
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Notations

Variables and functions
A – cross-sectional area;
C – heat capacity;
c – constraint function;
d – distance to the Sun;
F – implicit function;
f – objective function;
Fij – the geometric view factor between surface i and j;
GL – linear thermal conductance factor;
GR – radiative thermal conductance factor;
Gs– solar constant;
k – thermal conductivity;
L – the distance between two adjacent thermal nodes;
m – number of design points;
N – number of disciplines;
n – number of thermal nodes in the model;
Pel – electric input power;
Pout – component output power;
Q – heat flux;
Qalb – Albedo heat flux;
Qdis – internally dissipated heat flux;
Qplanet – planetary infrared heat flux;

QSun– absorbed solar heat flux;
qs – incident solar flux density;
R – function of residual equilibrium equations;
T – temperature;
t – time;
X – vector of design variables;
x – design variable;
y – state variable;
a – solar absorptivity;
h – solar array efficiency;
he– electrical efficiency of a solar cell;
hmppt – efficiency of MPPT converter.
s – Stefan-Boltzmann constant;
F – yaw Euler angle;
Ψ – pith Euler angle;
Ψ – adjoint vector;
Ω – roll Euler angle;
  – infrared emissivity;

Abbreviations
AU – astronomical unit, the average distance between the 
Earth and the Sun, which is about 93 million miles or 150 
million kilometers
LHS – Latin hypercube sampling;
MAUD – modular analysis and unified derivatives archi-
tecture;
MDF – multidisciplinary feasible;
MLI – multi-layer insulation;
MPPT – maximum power point tracker;
PCB – printed circuit board;
SLSQP – sequential least squares programming;
XDSM – extended design structure matrix.
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