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Abstract. The probability of an airplane deviation from pre-planned trajectory is a core of aviation safety analysis. We 
propose to use a mixture of three probability density distribution functions it the task of aviation risk assessment. Pro-
posed model takes into account the effect of navigation system error, flight technical error, and occurrence of rare events. 
Univariate Generalized Error Distribution is used as a basic component of distribution functions, that configures the er-
ror distribution model from the normal error distribution to double exponential distribution function. Statistical fitting of 
training sample by proposed Triple Univariate Generalized Error Distribution (TUGED) is supported by Maximum Likeli-
hood Method. Optimal set of parameters is estimated by sequential approximation method with defined level of accuracy. 
The developed density model has been used in risk assessment of airplane lateral deviation from runway centreline during 
take-off and landing phases of flight. The efficiency of the developed model is approved by Chi-square, Akaike’s, and Bayes 
information criteria. The results of TUGED fitting indicate better performance in comparison with double probability den-
sity distribution model. The risk of airplane veering off the runway is considered as the probability of a rare event occur-
rence and is estimated as an area under the TUGED.

Keywords: risk, airplane, aviation safety, probability density function, Triple Univariate Generalized Error Distribution, 
deviation, Maximum Likelihood Method, statistics.

Introduction

Operation of the air transport system is performed in 
accordance with a certain safety level. The safety of air 
transportation depends on numerous factors whose ac-
tion is taken into account by assessing the risks of their 
operation in the form of the frequency of their occur-
rence over a certain period of time. A special place in 
aviation safety is given to assessing the risk of mid-air 
collision (Mitici & Blom, 2018). Results of the collision 
risk assessment are used for the separation minima esti-
mation in air traffic management. A risk of mid-air col-
lision can be evaluated as a product of the probabilities 
of airplanes deviations from the preplanned trajectory of 
flight (Fujita, 2013). The risk of collision with the terrain 
at low altitudes can be considered as the probability of 
airplane proximity to a dangerous point of relief. Con-
sideration of collision risks and events that can lead to 
unsafe flight (Fala & Marais, 2016) is an important step 
of airspace design and usage.

Performance of safety assessment depends on the nu-
merous factors that are taken into account in the research 
model. Simple models of risk assessment based on the sta-
tistical processing of airplane trajectory data are common-
ly used. Also, analytical functions of probability distribu-
tions are used in the tasks of assessing the risks of rare 
events. In particular, the assessment of the risk of airplane 
veer off  the boundaries of the runways can be considered 
as an assessment of an extremely rare event. The risk as-
sociated with rare events is practically impossible to assess 
by the frequency of occurrence due to the limited statisti-
cal data sample. Therefore, estimation of the probability 
of rare events is performed on the basis of statistical data 
processing taking assumptions concerning the function 
of random variables distribution. In this case, parameters 
estimation of the probability distribution function is per-
formed. Probability of random value is evaluated as an 
area below probability density function (PDF) limited by 
the confidence band and reference frame. In the common 
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tasks of risk analysis, a set of confidence bands is used to 
estimate probabilities of parameter deviation occurrence.

A mixture of two probability density functions is com-
monly used in the task of risk assessment of airplane devi-
ation from a cleared flight level or pre-planned trajectory 
in both horizontal and vertical planes. For example, the 
mixed distribution model (MD) consisting of core distri-
bution (CD) and tail distribution (TD) is considered in 
numerous studies (Mori, 2011; Nagaoka, 2008):

MD (x) = γ CD (x) + (1 – γ) TD (x), (1)

where x is an airplane deviation from pre-planned trajec-
tory, γ is the probability of a gross navigational error.

The CD represents errors derived from standard navi-
gation system deviations. These errors depend on the on-
board navigation system precision level and human factor. 
The TD corresponds to non-nominal performance and 
represents result of rare factors degradation influence. TD 
corresponds to rare events simulation.

Different PDFs can be used as CD and TD in a model 
(1). Normal Density Function (NDF), Exponential Densi-
ty Function (EDF), Double Exponential Density Function 
(DEDF) (ICAO, 1988; Nagaoka, 2008), Laplacian, Freshet, 
Weibull, Gumbel (ICAO, 2008b), Generalized Pareto Dis-
tribution (GPD) are often used in risk assessment within 
air navigation system (ICAO, 2008b).

The main problem of model (1) usage is a correct se-
lection of α coefficient, which characterizes the CD and 
TD mixture level. Incorrect or inaccurate selection of α is 
the reason for a certain overestimation or underestimation 
of the risk evaluation by the PDF on the tails.

CD utilizes errors of on-board positioning system 
and flight technical error which is result of human fac-
tor influence. Performance of on-board positioning sys-
tem has been increasing rapidly during last three decades. 
An accuracy improving is a result of development of ad-
vanced signal processing algorithms, new antenna design, 
introduction of numerous augmentation systems. Thus, 
an error of on-board positioning system becomes much 
smaller than flight technical error in manual mode. Dif-
ferent degrees of these errors make usage of one PDF in 
CD inaccurate. Thus, model (1) is not adequate in the case 
of imbalanced errors.

The main purpose of current research is to design a 
new model of risk assessment connected with airplane 
deviations which take into account imbalanced error 
contribution of positioning system and flight technical 
errors. Separation of PDFs in the risk model leads to im-
provement of risk assessment performance and makes the 
model adequate to current equipment level.

1. Triple probability density distribution model

In the case of estimating the airplane deviation from the 
planned trajectory by statistic, the CD characterizes the 
distribution of Total System Error (TSE), that is, the total 
error of maintaining a given trajectory. The TSE is a sum 

of Navigation System Error (NSE), Flight Technical Er-
ror (FTE), and Path Definition Error (PDE) (ICAO, 2006, 
2008a):

TSE2 = NSE2 + FTE2 + PDE2. (2)
In a general case, the NSE is determined by an error of 

airplane positioning and depends on the type of naviga-
tion system. FTE characterizes the ability of a pilot or an 
automatic piloting system to follow a predetermined flight 
trajectory. In case of manual control, the FTE includes er-
rors of indication by flight instruments and data interpre-
tation by pilot. PDE utilizes the difference between path 
defined in Flight Management System and path expected 
to be flown over the ground. Due to use of on-board com-
puting systems with digital route mapping support, the 
impact of PDE is too small (compared to NSE and FTE 
values) that its value can be neglected (ICAO, 2008a).

According to error model (2), the deviations from the 
pre-planned trajectory should be represented by decom-
position of CD on the main components corresponding to 
the NSE and FTE in tasks of risk assessment. Thus, a pro-
posed model includes a mixture of three PDFs (Figure 1):

ρ(х) = αρNSE (х) + βρFTE (х) + (1 – α – β) ρT (х),  (3)

where ρNSE(х) is the PDF utilizing the errors of navigation 
system; ρFTE(х) is the PDF characterizing the FTE; ρT(х) 
is the PDF characterizing the appearance of rare events; 
α and β are weight coefficients of ρNSE(х) and ρFTE(х) in 
the mixture.

Global Navigation Satellite System (GNSS) can be 
considered as a primary on-board positioning system of 
airplane due to a high level of accuracy, availability, and 
continuity of measured data. Influence of some factors can 
degrade performance of GNSS and may lead to position-
ing lock. Therefore, inertial navigation system or position-
ing by navigational aids data can be used as a stand-by 
positioning systems (Ostroumov & Kuzmenko, 2018). 
Wide-area multilateration system, primary and second-
ary surveillance radars are used for airplanes coordinates 
measurement for air traffic control purposes. Also, LIDAR 
data (Ryu & Young, 2016) or localization by image pro-
cessing (Naidu & Durgarao, 2012) are used in some risk 

Figure 1. Components of triple probability density  
distribution model
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analysis, but these approaches require specific sensors on-
board or in the ground infrastructure.

Typical positioning system errors are described by a 
normal error distribution model with different parameters 
for lateral, longitudinal and vertical directions. GNSS er-
ror distribution model depends on time and user loca-
tion, while radar error distribution model depends mostly 
on slant distance to airplane. Risk assessment of lateral 
deviations can be performed by a statistical analysis of 
trajectory data measured by on-board sensor. Position 
measurements by Global Positioning System (GPS) with 
Satellite-based (SBAS) or ground-based augmentation 
systems (GBAS) allow getting precise trajectory data in 
the terminal area at a level that satisfies the conditions 
for CAT 3 landing system (less than 1m). Performance 
of positioning by navigational aids does not reach level 
of GNSS in normal operational mode (Kuzmenko & Os-
troumov, 2018; Ostroumov et al., 2019). However, GNSS 
error depends on a number of factors such as: geometry of 
location in space, state of ionosphere, interference of radio 
waves propagation, interference and unintended jamming 
of navigation signals (Kutsenko et al., 2018). Some of these 
factors are difficult to take into account because their ac-
tions are related to extremely rare events. For example, the 
state of the ionosphere depends on the amount of solar 
radiation and the state of the Earth’s magnetic field. Also, 
simulation of the probability of unintentional jamming of 
GNSS signals can be considered in terms of fuzzy sets.

The NDF should be considered as FTE model in (2) 
(Cramer & Rodriguez, 2013). A comparative analysis of 
NSE and FTE shows that NSE values are smaller than FTE 
due to wide range of admissible deviations from flight 
path in lateral plane and high accuracy of trajectory data 
measured by GNSS.

The simulation of rare events ρT(х) is usually per-
formed by an EDF, that “moves up” the tails according to 
input statistics.
We propose to use Univariate Generalized Error 
Distribution (UGED) as ρNSE (х), ρFTE (х) and ρT (х) 
density functions to make model (3) universal due to 
high flexibility property. The domain of the UGED is x ϵ 
[−∞, ∞] and the function is defined by three parameters: 
μ ϵ [−∞, ∞] is the mean value of distribution; a ϵ [0, ∞] 
defines the dispersion; and, b ϵ [0, ∞] controls the PDF 
shape. UGED can be represented in different forms (Giller, 
2013; Ayebo & Kozubowski, 2003; Czyżycki, 2013). We use 
the follows:
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where a is a scale factor; b is a shape coefficient; μ is a 
mean value; Γ(b) is a Euler-gamma function.

Flexibility of (4) makes UGED similar to NDF if b = 
0.5, 2a =  and DEDF if b = 1, a = λ – 1 (considering 
Г(1) = 1 and Г(0,5) = 0.5π):
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(6)
where λ is a rate parameter; σ is a standard deviation; μ 
is a mean value.

In general form Triple UGED (TUGED) model can be 
represented by (3) with PDF in the form (4):
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 (7)
α + β < 1,

where A  = [a1, a2, a3] is a matrix of scale factors; B  = 
[b1, b2, b3] is a matrix of shape coefficients; M = [μ1, μ2, μ3] 
is a matrix of mean values.

In certain tasks, the PDF displacement in a horizontal 
plane can be neglected to make deviations in positive and 
negative directions of equal probabilities in order to im-
prove computation performance. Then:

μ = μ1= μ2 = μ3.
Parameters in matrixes A and B, obtained after 

TUGED fitting to a series of data, evaluate each compo-
nent of PDFs mixture in wide range of curves from NDF 
to DEDF. This property of TUGED makes its flexible to 
any input sensor data.

2. Model parameters estimation

The TUGED model in form (7) can be used in statisti-
cal analysis of lateral deviations from the pre-planned 
airplane trajectory. The TUGED is defined by a set of 
parameters estimated by statistics. Grouping of statistics 
by different properties (for example, under certain condi-
tions of flight or requirements of area navigation) creates 
a series of airplane deviation models and gives a list of 
different probabilities assessment.

Different methods of mathematical statistics can be 
used to estimate the parameters of TUGED by experi-
mental set of data. Maximum Likelihood Method (MLM) 
(Mori, 2011; Klein, 1980) or Least Squares Method (Mark-
ovsky & Huffel, 2007) can be applied. The choice of evalu-
ation method depends on two basic factors: the statisti-
cal properties of a valid estimator and the computational 
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complexity of the method. Analytical solution is impos-
sible in many cases due to high complexity of the calcula-
tion. Moreover, the computation complexity grows with 
increasing the number of estimated parameters.

The least-squares method is more oriented on a lin-
ear model and is undesirable for nonlinear functions. The 
MLM is based on likelihood function estimation that pro-
vides probabilistic relation for parameters evaluation and 
confidence band data simultaneously. Also, MLM com-
pares the ability of different models to fit the statistics. 
According to (ICAO, 1988), the main disadvantage of the 
MLM makes method less sensitive to the data structure 
within the tail in comparison with structure in the center 
of distribution. In order to improve MLM performance, 
tail data uses greater weight than in the central part. The 
mentioned above advantages make MLM reasonable to 
use in the task of TUGED fitting to input data.

We assume that X is a discrete random variable repre-
sented by n measured values x1, x2,…, xn. A variable X is 
distributed randomly under TUGED (7) with unknown 
matrix θ = [α, β, A, B, M].

According to MLM, the likelihood function is the fol-
lowing:

( ) ( )
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i
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where f(xi, θ) is probability that x variable takes a value of 
xi; i = [1,n]; n is a number of measurements; θ is a matrix 
of TUGED parameters.

The likelihood function takes the maximum value at 
the point of optimal fitting with values of θ. The maximum 
value of function can be reached at the point of first order 
derivative from the likelihood function equal to zero:
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Since the functions L(xi, θ) and lnL(xi, θ) take a maxi-
mum at one value of θ, we localize the maximum function 
of lnL(xi, θ) to replace product operator by a sum in order 
to improve computation performance:
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Finally, we have the system of non-linear equations:
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The first order derivatives of (7) by parameters α, β, 
a1, a2, a3, b1, b2, b3 are:
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Substituting expressions (12 – 19) in (11), we have a 
nonlinear system of eleven equations, that can be repre-
sented in the matrix form:

F(θ) = 0, (20)
where θ is a matrix of arguments, and F is a vector of 
functions.

The Newton’s method of iterated local linearization is 
applied to find a solution of (20). The solution of non-
linear system of equations at ith iteration is:

Θ = θi + εi, (21)
where θi

 is a solution at ith iteration; εi=[εi
α, εi

β, εi
a1, εi

a2, 
εi

a3, εi
b1, εi

b2, εi
b3, εi

μ1, εi
μ2, εi

μ3,] is an error matrix.
Substituting (20) into (21), we have:
F(θ) = F(θi + εi) = 0. (22)
Function F(θ) in (22) can be represented in the Taylor 

series expansion form:

F(θi + εi) = F(θi) + W(θi)εi = 0, (23)
where W(θi) is a matrix of partial derivatives by estimated 
parameters:

( ) ( )i
i
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From (23), we have
εi = –F(θi)W–1(θi). (25)

Substituting (25) into (21), we have
θi+1 = θi – F(θi)W–1(θi). (26)
Matrix θ became closer to maximum of likelihood 

function in (26) at each iteration. Computation of (26) 
is iterative until a certain acceptable level of error will be 
achieved.

Since F(θ) has a multiple critical points, it is impor-
tant to localize a search intervals for each of the param-
eter. Maximal and minimal values of search intervals for 
TUGED parameters are represented in Table 1. Since po-
sitioning errors make the greatest contribution into the 
measurement results, it is advisable to start search of α 
from the middle of the general set (α = 0.5). We choose 
starting value for β = 0.1 much less than α, which charac-
terizes the effect of FTE. The initial value for a and b coef-
ficients are chosen from the assumption about the normal 
error distribution. Also, we use μ = 0, which corresponds 
to the airplane motion at the preplanned path.

Table 1. The search intervals and starting point for  
evaluated parameters

Parameter Minimal value Maximal Value Starting point

α 0.1 0.8 0.5
β 0.01 0.5 0.1

a1, a2, a3 1 ∞ 2σ

b1, b2, b3 0.5 1 0.5
μ1, μ2, μ3 –∞ +∞ 0

3. Risk of airplane lateral deviation

Risk in aviation safety can be estimated by different ap-
proaches. One of them is grounded on evaluation of ex-
pected number of incidents or accidents per airplane fly-
ing hour (ICAO, 1998). Another approach considers risk 
as a probability of undesirable event. In this case, risk of 
airplane lateral deviation from cleared trajectory can be 
represented as a probability of unplanned airplane devia-
tion out the defined boundaries in horizontal plane. An 
area navigation requirements specify admissible level 
of performance for airplane positioning system (ICAO, 
2008a), that can be used as a boundary level in risk as-
sessment (Ostroumov & Kuzmenko, 2019).

In case of known PDF of airplane deviation, a risk can 
be estimated as an area under PDF limited to boundaries 
of area navigation requirements. A probability area is rep-
resented in Figure 2.

Risk of airplane deviation can be estimated by the next 
formula:
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is a probability of random value x located out of interval 
[xL, xR], RLR is a risk of airplane deviation out of interval 
[xL, xR].
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Figure 2. Risk of airplane deviation out of predefined 
boundaries
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4. Risk of airplane lateral deviation during 
runway operation

Veer off the runway is one of the dangerous events in 
aviation that can be analyzed in terms of rare events. 
Let’s make a risk level assessment of airplane deviation 
out the runway by TUGED model (7). As input data, we 
use statistics of airplane path on the runways of Purdue 
University Airport (LAF) during take-off and landing 
phases of flight. The majority of statistical data contains 
flight data from non-professional pilots with high values 
of flight technical error, which is a good example of im-
balanced levels of FTE and NSE. Airplane navigation is 
supported by G1000 integrated flight instrument system 
with GPS receiver supporting Wide Area Augmentation 
System (WAAS). Statics includes results of airplane coor-
dinates measurements represented as latitude and longi-
tude data with 1 Hz rate. Table 2 shows the basic descrip-
tion of statistical data for 10/28 (6600×150 ft) and 5/23 
(4225×100 ft) runways.

A training sample includes 447 unique flights for 5/23 
runway with (8229 data length) and only 36 flights for 
10/28 runway (only 717 data length). Mean values indicate 
about left side deviation behavior during runway opera-
tions.

Figure 3 shows a histogram of airplane deviations from 
the runway geometric center using statistical data of both 
10/28 and 5/23 runways.

In statistical analysis it makes sense to consider a set 
of models that support some assumptions about the event. 
We use an assumption about the airplane motion at the 
center of the runway that makes μ1  = μ2  = μ3  = 0 in a 
model (7):

TUGED1 = ρ (α, β, a1, a2, a3, b1, b2, b3,0, 0, 0).

We consider the case of a mixture of two NDFs and 
one EDF in TD:

TUGED2 = ρ (α, β, a1, a2, a3, 0.5, 0.5,1, μ1, μ2, μ3).
We use a composition of TUGED1 and TUGED2 prop-

erties:
TUGED3 = ρ (α, β, a1, a2, a3, 0,5, 0.5, 1, 0, 0, 0).
Simplified models TUGED1, TUGED2, and TUGED3 

help to reduce time of data processing at the fitting stage 
due to less number of estimated parameters in comparison 
with TUGED.

The results of parameters estimation for the whole 
training sample (10/28 and 5/23) in the various TUGED 
options including comparison with DUGED are shown in 
Table 3. Mean values of each component of PDF are about 
zero, that indicate identical statistics for left and right sides 
deviations from the centerline of runway. Performance of 
statistical data fitting is shown in Table 4.

The validity of the estimated models can be compared 
by a set of coefficients:

1. Akaike’s Information Criteria (AIC). The AIC co-
efficient indicates the quality of the fitting model by the 
training sample (Akaike, 1973):

( )( )
1

2 ln 2
N

i
i

AIC x k
=

= − ρ +∑ , (28)

where N is a size of training sample; ρ(x) is a fitting model; 
k is a number of estimated parameters.

2. Bayes Information Criteria (BIC) takes into account 
the volume of training sample in the form of a fine in dis-
tribution parameters evaluation (Schwarz, 1978):

( )( ) ( )
1
ln 0.5 ln

N

i
i

BIC x k n
=

= − ρ +∑ , (29)

where x is an observed data; n is a number of data points 
in x; k is a number of parameters estimated by the model.

Table 2. Basic parameters of training sample

Runway Runway 
width, ft

Amount of 
sample

Amount 
of unique 

flights

Standard 
deviation, ft

Mean 
value, ft

Maximal 
deviation in 

the left side of 
runway, ft

Maximal 
deviation in 

the right side 
of runway, ft

Mean data 
spread (max-

min), ft

5/23 100 8229 447 3.15994 –0.31643 –46.602 35.04986 46.60201
10/28 150 717 36 7.038563 –0.86115 –51.8364 19.19464 51.83587

10/28 and 
5/23

– 8946 483 3.793449 –0.38248 –51.8364 35.04986 86.88628

Table 3. Results of TUGED parameters estimation

α β μ1 μ2 μ3 a1 a2 a3 b1 b2 b3

TUGED 0.1 0,19 1.2×10-3 1.9×10-3 2.0×10-03 32 6 1 0.65 0.67 0.51
TUGED1 0.37 0.01 (0) (0) (0) 13 17 1 0.68 0.67 0.61
TUGED2 0.1 0.25 –8.11-05 1.3×10-3 2.7×10-3 31 12 1 (0.5) (0.5) (1)
TUGED3 0.14 0.04 (0) (0) (0) 71 10 1 (0.5) (0.5) (1)
DUGED 0.74 – 4.9×10-3 –1.1×10-4 – 1 29 – 0.63 0.52 –

Note: values in (*) are predefined by model approximation.
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3. Criterion c2 (Pearson Criterion). c2`coefficient takes 
into account the divergence of the empirical and theoreti-
cal absolute frequencies over the histogram intervals:

( )22

1

r
i i

ii

m np
np=

−
χ =∑ ,  (30)

where r is a number of histogram intervals; mi is an ab-
solute frequency at ith interval; pi is the theoretical prob-
ability of getting into the ith interval; n is the total number 
of experimental data.

4. The sum of the probability difference between the 
frequency of occurrence in the interval and the probability 
of occurrence evaluated by fitting function:

1

N

i i
i

SPD np
=

= υ −∑ , (31)

where υ is a frequency; p is a probability; n is a number of 
intervals; N is a size of training sample.

The quality of fitting a training sample to the PDF is 
better when the value of the coefficient is smaller.

Results of risk assessment and performance of ap-
proximation by MLM are represented in Table 4 for dif-
ferent models of PDF. Risk of airplane lateral deviation is 
estimated by (27) for boundaries in half of runway width 
in 100ft and 150ft according to input data.

Results of using TUGED model gives a better fitting 
performance in comparison with other models according 
to AIC, BIC, c2, and SPD criteria. However, TUGED re-
quires more computation time due to fitting complexity.

Results of data fitting by TUGED in comparison with 
DUGED for different training samples are represented in 
Figures 4–6.

Table 4. Performance of approximation and results of risk assessment

AIC BIC c2 SPD Computation 
time, s

Number of 
parameters R100 R150

TUGED 20412 10245 4714 5631 4.13 11 7.2×10–3 1.1×10–3

TUGED1 23264 11660 7764 7770 1.08 8 1.0×10–4 5.4×10–7

TUGED2 25615 12836 11165 9306 0.38 8 2.3×10–3 6×10–5

TUGED3 22266 11151 7063 7123 0.84 5 4×10–2 1.8×10–2

DUGED 20509 10279 5494 6266 0.82 7 4.6×10–3 1.1×10–4
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Figure 3. Lateral deviation statistics
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Normalized frequency of airplane deviation approves 
the assumption of triple component behavior of PDF. Part 
of core within small deviations from the centerline of run-
way (±5 ft) can be a result of airplane positioning error. 
Deviations within interval ± 30 ft utilize FTE. Fitting with 
TUGED makes possible to recognize FTE and rare events. 
Estimation of rare events with TUGED, such as airplane 
veering off the runway, is more appropriate in comparison 
with DUGED due to more adequate PDF used in part of 
rare events.

Conclusions

In the paper, we propose to use a triple probability den-
sity distribution function as a model of airplane deviations 
from preplanned trajectory in the tasks of aviation risk 
assessment. An airplane deviation is a result of navigation 
equipment error, flight technical error, and rare events. 
Affect of these factors is included in the triple probability 
density distribution function to develop a model adequate 
to acting errors. Usage of Univariate Generalized Error 
Distribution allows getting a sufficient level of flexibility 
from Normal to Double exponential distribution function 
evolution. Introduction of additional probability density 
distribution component to airplane deviation model is 
caused by different degrees of NSE and FTE.

As an example, we use TUGED in the statistical 
analysis of airplane lateral deviation during runway op-
erations. Training statistical data of airplane deviations 
contains unbalanced errors caused by a significant differ-
ence between NSE and FTE in manual mode. Results of 
TUGED validation in the statistical analysis of airplane 
deviations from the center of the runway give the risks of 
airplane rolling out the runway of LAF airport in levels of 
3.7×10-5(runway 5/23) and 1.2×10-6 (runway 10/28). Ef-
ficiency of TUGED model usage for input data was proved 
by AIC, BIC, and Pearson criterions

TUGED is a flexible and universal model that can be 
applied in case of different errors affecting a transport sys-
tem. Thus, TUGED will give the same result with DUGED 
in case of the same level of FTE and NSE. TUGED model 
is recommended to use in different tasks of risk assess-
ment at different flight phases with manual flight control 
mode.

Also, obtained results can be used for the further de-
velopment of air traffic safety models and improvement of 
airplane operation within the runway.
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Notations

Variables and functions

A – matrix of a scale factors;
a – scale factor;
B – matrix of shape coefficients;
b – shape coefficient;
F – vector of functions;
f(xi, θ) – probability that x variable takes a value of xi;  
i = [1, n];
k – number of estimated parameters;
L(xi, θ) – likelihood function;
M – matrix of mean values;
mi – absolute frequency at ith interval;
n – number of measurements;
N – size of training sample;
P{xR<x<xL} – probability of random value x located out 
of interval [xL, xR],
pi – theoretical probability of getting into the ith interval;
r – number of histogram intervals;
RLR – risk of airplane deviation out of interval [xL, xR];
W(qi) – matrix of partial derivatives by estimated param-
eters;
x – airplane deviation from a pre-planned trajectory;
X – discrete random variable;

xL – left boundary of deviation;
xR – right boundaries of deviation;
Γ(b) – Euler-gamma function;
α – weight coefficients of rNSE(х) in TUGED;
β – weight coefficients of ρFTE(х) in TUGED;
ei – error matrix;
γ – probability of a gross navigational error;
λ – rate parameter;
µ – mean value;
θ – matrix of TUGED parameters;
ρ(х) – probability density distribution function;
ρFTE(х) – PDF characterizing the FTE;
rNSE(х) – PDF utilizing the errors of navigation system;
rT(х) – PDF characterizing the appearance of rare events;
rUGED(х) – Univariate Generalized Error Distribution 
function;
σ – standard deviation;
υ – frequency.

Abbreviations

AIC – Akaike’s Information Criteria;
APR – Approach;
BIC – Bayes Information Criteria;
CD – Core Distribution;
DEDF – Double Exponential Density Function;
DUGED – Double Univariate Generalized Error Distribu-
tion;
EDF – Exponential Density Function;
FTE – Flight Technical Error;
GBAS – Ground-based Augmentation System
GNSS – Global Navigation Satellite System;
GPS – Global Positioning System;
MD – Mixed Distribution;
MLM – Maximum Likelihood Method;
NDF – Normal Density Function;
NSE – Navigation System Error;
PDE – Path Definition Error;
PDF – Probability Density Function;
SBAS – Satellite-based Augmentation System;
SID – Standard Instrument Departure;
SPD – Sum of the Probability Difference;
STAR – Standard Terminal Arrival;
TD – Tail Distribution;
TSE – Total System Error;
TUGED – Triple Univariate Generalized Error Distribu-
tion;
UGED – Univariate Generalized Error Distribution;
WAAS – Wide Area Augmentation System.
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