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Introduction

Over the years, many control techniques for designing 
the flight control system of manned and unmanned heli-
copters have been extensively studied (Oktay et al., 2016; 
Oktay & Sal, 2015, 2016). Vilchis et al. (2003), stated that 
the main difficulties for designing stable feedback con-
trollers for helicopters stem from their nonlinearities and 
couplings. In certain aspects, TRMS behavior resembles 
that of a helicopter and inherits a challenging engineer-
ing problem due to its high nonlinearity, the cross-cou-
pling between its two axes, instability, complex dynamics 
and inaccessibility of some of its states and outputs for 
measurements (Choudhary, 2017; Feedback Instruments 
Ltd, 1998; Feedback Instruments Ltd, 2006; Gorczyca & 

Hajduk, 2004; Juang et al., 2008; Juang et al., 2011; Ra-
ghavan & Thomas, 2017; Rahideh et al., 2007; Rahideh 
et al., 2008; Tao et al., 2010; Wen & Lu, 2008). However, 
the TRMS is substantially different from a helicopter (Ta-
ble 1). The TRMS is a laboratory platform developed by 
Feedback Instruments Ltd. (1998) for control experiments 
in universities and research centers. It has a beam (consist 
of a main and tail beam) pivoted on its base in such a way 
that it can rotate freely, resulting in pitch (θv) and azimuth 
angles (θh) measured by position sensors fitted at the pivot 
(Figure 1). At both ends of the beam, there are two rotors 
(the main and tail rotors) driven by DC-motors generat-
ing the vertical and horizontal thrusts. The aerodynamic 
forces are controlled by varying the speed of the motors. 
Two corresponding angular velocities of the rotors are 
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Table 1. The main differences between a helicopter and a TRMS (Rahideh et al., 2008)

HelicopterTRMS

The main rotor headMidway between two rotorsLocation of the pivot point
Collective pitch controlSpeed control of the main rotorLift generation or vertical control

Pitch angle of the tail rotor bladesTail rotor speedYaw is controlled by
Yes (for directional control)NoCyclical control
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measured by tachogenerators coupled with the driving 
DC motors. Therefore, the control inputs are the supplied 
voltages of the DC-motors. A counterbalance arm with 
a weight at its end is fixed to the beam at the pivot. The 
main objective of this research is to control the outputs of 
the system, i.e., the pitch and azimuth angles.

Various control methods have been applied to TRMS. 
Gorczyca and Hajduk (Gorczyca & Hajduk, 2004) de-
signed the suboptimal and variable gain controller using 
the LQ methods for the TRMS. In Rahideh et al. (2007), 
a PD controller tuned with a genetic algorithm was used. 
To eliminate the inversion error, an adaptive neural net-
work-based compensator was designed and added to the 
control system. Wen and Lu (2008) applied a PID-based 
robust deadbeat control technique to a TRMS, and they 
compared results with the system responses obtained 
from the individual PID controllers. In their work, the 
system was decoupled into two SISO systems, and the 
crossing couplings were considered as disturbances to 
each other. Also, they designed controllers for two SISO 
systems, and they could suppress the cross-coupling 
effects between the tail and the main rotors. In Juang 
et al. (2008), several classical and intelligent control tech-
niques were applied to a TRMS for trajectory tracking 
control. The system equipped with the fuzzy controller 
had better performance than other controllers. In Tao 
et al. (2010), the TRMS was decoupled, and Takagi–Sug-
eno fuzzy model was used in detail. Based on this model 
of TRMS, parallel distributed fuzzy LQR controllers were 
presented, and the stability of the Takagi–Sugeno fuzzy 
TRMS model with these controllers was discussed. Juang 
et al. (2011) employed a conventional PID controller and 
a fuzzy compensator with a real-valued genetic algorithm 
for tuning parameters of the PID controller. Augmented 
PID with feedforward and feedback inverse-model con-
trol with particle swarm optimization was presented in 
(Toha & Tokhi, 2011) and, the results were compared 
to the conventional PID controller based methods. A 
fault-tolerant control strategy based on a kind of vir-
tual actuator approach using linear parameter varying 
techniques was presented in (de Oca et al., 2012). Jahed 
and Farrokhi (2013) designed two adaptive fuzzy con-

trollers, and they applied these controllers to a TRMS in 
real-time. Moreover, based on the Lyapunov theory, they 
compared the experimental results of these controllers 
with the results obtained from the nonadaptive fuzzy and 
PID controllers. Zeghlache et al. (2014) implemented a 
type-2 fuzzy logic controller for the TRMS. They also 
compared the performance of this controller with the 
performance of the type-1 fuzzy logic controller. Real-
time implementation of a neuroadaptive observer-based 
robust backstepping controller for the TRMS and estima-
tion of the unknown nonlinearities of the TRMS using 
Chebyshev neural network were investigated in (Pratap 
& Purwar, 2014). Butt and Aschemann (2015) designed 
a integral sliding mode controller and they employed a 
discrete-time extended Kalman filter combined with a 
discrete-time implementation of the nonlinear control 
law to estimate unmeasurable states, uncertainties, and 
disturbance torques. Pandey et  al. (2016) proposed a 
multiple model-based adaptive control with static state-
feedback based on feedback linearization technique on 
the TRMS. Choudhary (2017) designed an H∞ optimal 
feedback controller enhanced with a mixed sensitivity 
method in the presence of cross-coupling effects, and he 
compared the transient performance of H∞ – controlled 
system with classical PID design. In Pandey et al. (2016), 
a robust PID controller based on the Kharitonov’s stabil-
ity theorem was designed and implemented on a TRMS. 
Designing and real-time implementation of a decentral-
ized sliding mode controller for a TRMS with a sigmoid 
function in the sliding surface to remedy chattering 
problems were studied in (Faris et al., 2017). Precup et al. 
(2017) proposed two model-free sliding mode control 
system structures based on Lyapunov stability theory, 
and they compared with a model-free intelligent PI con-
trol system structure. A practically implementable model 
predictive controller design for a TRMS was presented 
in (Raghavan & Thomas, 2017). Two proportional–in-
tegral–derivative controllers were employed in (Pandey 
et al., 2018) to control the main and tail rotors of TRMS, 
independently. Kharitonov’s robust stability theorem was 
used to evaluate the ranges of the controller gains in the 
presence of structured uncertainties. Bacterial foraging 
optimization technique was also used to find the param-
eter value meeting desirable time domain specifications.

An accurate dynamic model of the system is required 
to develop effective control objectives, and this is a more 
powerful motive to design a controller that can control the 
system with cross-coupling and uncertainties, hence, the 
Quantitative Feedback Theory (QFT) is selected as one of 
the robust control methods.

Quantitative feedback theory, introduced by Horow-
itz in the early 1960s, is a frequency domain technique 
that emphasizes the use of feedback for achieving the 
desired system performance tolerances despite plant un-
certainty and plant disturbances (Houpis & Rasmussen, 
1999). Utilizing the Nichols chart is the key tool for this 
technique, and it is used to achieve a robust design over 

Figure 1. The model of TRMS
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the specified region of plant uncertainty. Desired time-
domain responses are translated into frequency domain 
tolerances, which lead to bounds (or constraints) on the 
loop transmission function. The design process enables 
the designer to a trade-off between compensator complex-
ity and system performance (Gharib & Moavenian, 2016; 
Jahanpour et al., 2015; Moavenian et al., 2011; Moeinkhah, 
et al., 2014).

In this paper, to obtain the transfer functions, the 
equations of the electrical and mechanical part of TRMS 
are linearized. Then, the linear model was compared with 
the nonlinear one for each plane by a simulation approach. 
Also, using the QFT method, a controller is designed for 
motion in each plane. Furthermore, the robustness of the 
control strategy is illustrated by the time domain closed-
loop responses of vertical and horizontal motions, includ-
ing the controller and pre-filter in the presence of uncer-
tainties.

1. Modeling the TRMS

In this section, the mathematical model of TRMS intro-
duced by Christensen et  al. (2006) is briefly presented. 
The TRMS model is divided into a vertical and a hori-
zontal plane. Also there are three sections, namely the 
DC-motors, the rotors, and the mechanics for each plane. 
The DC-motor has voltage as input and angular velocity 
as output. The rotor has an angular velocity as input and 
returns the aerodynamic torques. The inputs for the me-
chanics of the system are an aerodynamic force from the 
same plane, and an aerodynamic force and the angular 
velocity from the other plane (the cross-coupling between 
two planes). The output from the mechanical section is 
the pitch and the azimuth angles for the vertical and the 
horizontal planes, respectively.

1.1. Model of DC-motors

The electrical and mechanical parts of the DC-motor can 
be modeled as the following equations, respectively:

( )
( ) ( ) ( )a

a a a a a
di t

u t R i t L k t
dt

= + + ω ;  (1)

2( ) ( ) ( ) ( )a a a a a a aJ t ki t D t B tω = − ω − ω , (2)

where ua is the applied motor voltage, Ra is the Ohmic 
resistance, ia is the armature current, La is the inductance, 
k is the motor constant, aω  is the angular velocity of the 
armature, Ja is the total inertia seen by the motor, aD  is 
the motor drag friction constant; accordingly, 2 ( )a aD tω is 
the torque due to drag friction. aB  is the motor viscous 
friction constant; consequently, ( )a aB tω is the torque due 
to viscous friction.

To simplify the model of the DC motor system, the 

term 
( )a

a
di t

L
dt

 can be ignored in equation (1) . As a re-

sult, the system dynamics is not altered significantly by 

omitting the inductance of the motor because the time 

constant of the linear term 
( )a

a
di t

L
dt

 is small compared 

to the mechanical part (Christensen et al., 2006).
Thus, equation (1) reduces to the following linear 

equation:
( ) ( ) ( )a a a au t R i t k t= + ω . (3)

The nonlinear terms of the model are linearized using 
a first order Taylor approximation (Greenberg, 1998; Jef-
frey, 2002).

( ) ( ) ( )
x x

dff x f x x x
dx =

≈ + − . (4)

That can be applied to a function of two variables 
(Greenberg, 1998; Jeffrey, 2002):

( , ) ( , )

( , ) ( , ) ( ) ( )
x y x y

f ff x y f x y x x y y
x y
∂ ∂

≈ + − + −
∂ ∂

. (5)

Hence, the linear equations of electrical and mechani-
cal parts of the DC-motor are obtained, respectively:

( ) ( ) ( )a a a au t R i t k t= + ω

 ; (6)

( ) ( ) 2 ( ) ( )a a a a a a a aJ t k i t D t B tω = − ω ω − ω



   , (7)

where ( ) ( )a a au t u t u= − , 
˜  

( ) ( )a a ai t i t i= −  and 

( ) ( )a a at tω = ω −ω

1.

The working point values ai  and au  are calculated 
by choosing aω  (working point value of aω ) and solving 
equation (3) and equation (2) in steady-state:

a a a au R i k= + ω ; (8)

20 a a a a aki D B= − ω − ω . (9)

The following results can be obtained by applying 
Laplace transforming from the equations and :

( ) ( )
( ) a a

a
a

U s k s
I s

R
− Ω

=


 ; (10)

( ) ( )
2a a

a a a a

ks I s
J s D B

Ω =
+ ω +

  , (11)

where ( ) ( )a a aI s I s i= − , ( ) ( )a a as sΩ =Ω −ω  and 

( ) ( )a a aU s U s u= − .
The closed-loop transfer function is obtained from the 

block diagram of the linear DC-motors (Figure 2):

2

( )
( ) (2 )

a

a a a a a a a

s k
U s J R s R D B k
Ω

=
+ ω + +





. (12)

1  The signs “~” and “–” at the top of variables are indicated the 
small signal and the working point values, respectively.
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1.2. Aerodynamic torques

The aerodynamic torques modeling using the theoreti-
cal methods would be  too difficult. Using a black-box 
test is much simpler and is more likely to produce more 
accurate results. The thrust and drag torques for both ro-
tors were determined in (Christensen et al., 2006) using 
black-box test method. The model of the aerodynamic 
torques is:

For the main rotor:

2 6 2 3
1 2( ) ( ) 57.5 10 0.713 10m m m m ma t a t − −τ = ω + ω = × ω + × ω ;

(13)
2 6 2 6

1 2( ) ( ) 4.80 10 9.35 10md m m m mc t c t − −τ = ω + ω = × ω − × ω .
(14)

For the tail rotor:
3 2 9 3

1 2 3
6 2 3

( ) ( ) ( ) 59.2 10

2.65 10 0.251 10 ;
t t t t t

t t

d t d t d t −

− −

τ = ω + ω + ω = − × ω +

× ω − × ω
 (15)

3 2 9 3
1 2 3

6 2 6

( ) ( ) ( ) 5.49 10

0.206 10 32.5 10 .
td t t t t

t t

b t b t b t −

− −

τ = ω + ω + ω = × ω −

× ω + × ω
 (16)

In the above relations, mω  is the angular velocity of 
the main rotor, tω is the angular velocity of the tail ro-
tor, mτ  and tτ  are the thrust torques, mdτ  and tdτ  are 
the rotor drag torques from the main and the tail rotors, 
respectively.

1.3. Modeling the mechanics

In this subsection, the torques and the moment of inertia 
for motion in each plane are calculated. Then using the 
conservation law of angular momentum, the equations of 
motions are obtained. All the mass and length parameters 
used in this subsection are shown in Figure 3, and their 
numerical values are given in the Appendix.

1.3.1. Torques in the vertical plane
In the vertical plane, the torques are (Figure 3):

 – mτ  is the main rotor thrust torque which is results 
from the main rotor thrust force mF

 – tdτ  is the tail rotor drag torque which is results from 
the tail rotor drag force tdF

 – torque gτ  produced by the gravitational force
 – torque cτ  produced by the centrifugal forces
 – torque fvτ  produced by the friction force

Considering Figure 3, the net torque exerted by the 
gravitation on the TRMS is:

( )( ) ( )cos( ( )) sin( ( ))g v vt g A B t C tτ = − θ − θ , (17)
where vθ is the pitch angle, also:

2

2

2

tb
ts t tb

mb
ms m mb

cb
c c

m
A m m l

m
B m m l

m
C m l

 
= + + 
 
 

= + + 
 
 

= + 
 

. (18)

The total torque from the centrifugal forces Fcm, Fct, 
and Fcc is:

( )21( ) ( ) sin(2 ( ))
2c tb mb c vht t Al Bl Cl tτ = − ω + − θ , (19)

where h hω = θ  in which hθ is the azimuth angle.
The torque caused by the viscous friction is:

( ) ( )fv v vt tτ = −ω µ , (20)

where v vω = θ  and also vµ  is the viscous friction con-
stant in the vertical plane.

From equations (17), (19) and (20) combined with 
equations (13) and (16), the net torque in the vertical 
plane is:

( )
( )2

( ) ( )cos( ( )) sin( ( ))
1 ( ) sin(2 ( ))
2
( ) ( ( )) ( ( ))

v v v

tb mb c vh

v v m m td t

t g A B t C t

t Al Bl Cl t

t t t

τ = − θ − θ

− ω + − θ

−ω µ + τ ω + τ ω

. (21)

1.3.2. Torques in the horizontal plane
In the horizontal plane, the torques are (Figure 4):

 – tτ  is the tail rotor thrust torque which is results from 
the tail rotor thrust force tF

 – mdτ  is the main rotor drag torque which is results 
from the main rotor drag force mdF

 – torque fhτ  produced by the friction force
 – torque khτ  produced by the spring force

Figure 2. Block diagram of the linear DC motor model in the 
working point

Figure 3. Total forces and torques in the vertical plane Figure 4. Total forces and torques in the horizontal plane
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The torque fhτ  produced by the friction force in the 
horizontal plane is:

( ) ( )fh h ht tτ = −ω µ , (22)
where hµ  is the viscous friction constant in the horizontal 
plane.

The spring torque arising from computer cables is:
( ) ( )kh h ht t kτ = −θ , (23)

where hk  is the spring constant in the horizontal plane.
From equations (22) and (23) combined with equations 

(14) and (15), the net torque in the horizontal plane is:
( ) ( ) ( ) ( ( )) ( ( ))h h h h h md m t tt t t k t tτ = −ω µ −θ + τ ω + τ ω . (24)

1.3.3. Moment of inertia in the vertical plane
Using the parallel axis theorem (Ginsberg, 2008; Harri-
son & Nettleton, 1997; Meriam & Kraige, 2002) and mere 
simplifications, the total moment inertia in the vertical 
plane is:

2 2 2 2 2

2 2 2 2 2

1 1
3 3

1 1
3 2

v m mb t tb c cmb mb tb tb

cb c ms ms ms ts ts tsmb tb

J m l m l m l m l m l

m l m r m l m r m l

= + + + +

+ + + + + .
 (25)

1.3.4. Moment of inertia in the horizontal plane
The moment of inertia of each part can be obtained by cal-
culating the moment of inertia of each rigid body around 
an inclined axis (D’Souza & Garg, 1984; Ginsberg, 2008; 
Harrison & Nettleton, 1997; Meriam and Kraige, 2002) 
and the parallel-axis theorem along with some simplify-
ing procedures. Hence, the total moment of inertia in the 
horizontal plane is:

2 2( ) cos ( ( )) sin ( ( ))h v vJ t D E t F t= + θ + θ , (26)
where:

2

2 2 2 2 2

2 2

2 2 2

1 ;
2

1 1
3 3
;

1 1 .
3 2

ts ts

m mb t tb ms msmb mb tb tb

ms tsmb tb

c c cb c ms ms

D m r

E m l m l m l m l m r

m l m l

F m l m l m r

=

= + + + + +

+

= + +

 (27)

1.4. Transfer function in the vertical plane

The following statement is derived by considering conser-
vation law of angular momentum (Ginsberg, 2008; Har-
rison & Nettleton, 1997) for the TRMS:

,( ) ( ) ( )v v ext tH t H t H t= + , (28)

where ,v extH  is the angular momentum arising from 
external torque affecting the TRMS, tH  is the angular 
momentum from the tail rotor circling and ( )vH t  is the 
resulting angular momentum.

Differentiating equation (28), then use of a deriva-
tive form of the angular impulse-momentum principle, 
i.e. O OH = ΣΜ  (Ginsberg, 2008) for ,v extH  and apply-
ing the theorem of angular momentum H J= ω  for the 
remaining terms yields:

( )v v v tr tJ t Jτ = θ − θ  , (29)

where vθ  is the angular acceleration from external 
torques in the vertical plane, tθ is the angular accelera-
tion of the tail rotor and trJ  is the moment of inertia of 
the tail rotor blades.

To calculate the moment of inertia of the tail rotor 
blades trJ , the rotor is approximated as a rectangular 

plate with the inertia of 2 21 ( )
12

m a b+  (Ginsberg, 2008; 
Meriam & Kraige, 2002):

2 21 ( )
12tr tr tw tlJ m l l= + , (30)

where mtr is the mass of tail rotor, ltw is the width of the 
tail rotor blade, and ltl is the length of the tail rotor blade.

Substituting equation (21) in equation (29), then, 
linearizing the obtained equation, the following transfer 
function for the motion in the vertical plane based on 
the angular velocity of the main and tail rotor is obtained 
(Christensen et al., 2006):

( )

( )

1 2
2

2
1 2 3
2

2
( ) ( )

3 2
( ).

m
v m

v v

tr t t
t

v v

a a
s s

J s s gC

J s b b b
s

J s s gC

ω +
Θ = Ω +

+µ +

+ ω + ω +
Ω

+µ +

 



 (31)

The numerical values   of constant coefficients a1, a2, 
b1, b2 and b3 in the above equation, were mentioned in 
section 1.2. Aerodynamic Torques.

1.5. Transfer function in the horizontal plane

The transfer function in the horizontal plane is deter-
mined similarly to the vertical one. As a general rule, the 
conservation of angular momentum states:

,( ) ( ) ( )cos( )h h ext m vH t H t H t= + θ , (32)
where hH is the resulting angular momentum. ,h extH is 
the angular momentum arising from the external torque 
affecting the TRMS, and mH is the angular momen-
tum arising from the spinning main rotor. Substituting 
H J= ω  in equation (32) and differentiating it, then, by 
use of Newton’s Second Law, i.e., O JΣΜ = θ  and apply-
ing it for ( ) ( )

( )
h

h h
h

t t
J t
τ

θ = ω =

 , the following relation is 
stated:

( ) ( )

( ) ( )cos( ( ))
( )cos( ( )) ( ) ( )sin( ( )) .

( )

h h h

h m v
mr m v m v v

h

J t t

J t t t
J t t t t t

J t

τ = ω −

 ω θ
ω θ −ω θ θ − 
 







  (33)
Moment of inertia of the main rotor blades mrJ is also 

calculated similarly to which performed for :trJ

2 21 ( )
12mr mr mw mlJ m l l= + , (34)

where mmr is the mass of the main rotor, lmw is the width 
of the main rotor blade, and lml is the length of the main 
rotor blade.
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Differentiating from equation (26) for ( )hJ t

 and sub-
stituting equation (24) in equation (33), then linearizing 
the obtained equation, the following transfer function for 
the motion in the horizontal plane based on the angular 
velocity of the main and tail rotor is obtained (Chris-
tensen et al., 2006):

( )

( )

2
1 2 3

2

1 2
2

3 2
( ) ( )

2
( ).

t t
h t

h h

mr m
m

h h

d d d
s s

D E s s k

J s c c
s

D E s s k

ω + ω +
Θ = Ω +

+ +µ +

+ ω +
Ω

+ +µ +

 



 (35)

The numerical values   of constant coefficients c1, c2, d1, 
d2 and d3 in the above equation, were mentioned in sec-
tion 1.2. Aerodynamic Torques.

2. Simulation results without controllers

The working point is defined when the main beam is lo-
cated horizontally, i.e., 0vθ =  and 0hθ = . In (Christens-
en et al., 2006), aω  has been obtained experimentally for 
both rotors: 54 rad/smω =  and 44 rad/stω = − .

The values of ati 2, atu , ami  and amu  can be obtained 
by solving the steady-state equations and :

2

0.125 A

4.89 V

1.15 A

11.9 V.

at t
at

t

at at at mt t

am m am m
am

m

am am am m m

B
i

k
u R i k

D B
i

k
u R i k

ω
= = −

= + ω = −

ω + ω
= =

= + ω =

 (36)

By inserting the numerical values from Appendix into 
equation (12), the following transfer functions for the tail 
and main motor are obtained, respectively:

2
( ) 0.0883

0.00410 0.00980( )
t t

at at at at at t

s k
sU s J R s R B k

Ω
= =

++ +

; (37)

2
( )
( ) (2 )
0.0748 .

0.0188 0.0249

m m

am am am am am m am m

s k
U s J R s R D B k

s

Ω
= =

+ ω + +

+





 (38)

Besides, by inserting the numerical values from Ap-
pendix into equations (31) and (35), the following transfer 
functions for the motions in the vertical and horizontal 
planes based on the angular velocity of the main and tail 
rotors are obtained, respectively:
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6
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0.00692( ) ( )
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43.6 82.5 10 ( );
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 (39)

2  The index “m” and “t” are referred to the main and tail rotor, 
respectively.
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. (40)

The simulation for the nonlinear and linear model has 
been performed with Simulink® in MATLAB®. The input 
signals for two DC-motors and motors responses to input 
signals are shown in Figure 5 and Figure 6, respectively.

As can be seen in Figure 6, for the main rotor model, 
the linear model response is approximately identical to 
the nonlinear model response. The two responses over-
lap at the working point exactly. However, for the tail ro-
tor model, as we expected, the linearized model response 
curve falls precisely on the nonlinear model response 
curve, which is due to neglecting the drag friction coef-
ficient D a for the tail rotor model in equation (2). The 
reason for ignoring this coefficient is given in the footnote 
of Appendix Table.
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Figure 5. Input signals for DC-motors

Figure 6. Motors responses
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By giving the input signals (Figure 5) to both the lin-
ear and nonlinear models of the device, the final output 
of the linear model and the nonlinear model are com-
pared in Figure 7. Because of using the first-order Taylor 
approximation for obtaining the linear model and some 
simplifications, the difference between the curves of the 
linear model and the nonlinear model is seen in Figure 
7. For the horizontal motion, this difference is more 
pronounced due to the presence of vθ in the moment 
of inertia in the horizontal plane as well as the model 
complexity in comparison with the vertical plane model.

Despite some differences, the final outputs of the 
models shown in Figure 7 represent that the linear mod-
eling of the electrical and mechanical parts is accurate 
adequately.

3. Controller design and simulation

The purpose of this work is to design a compensator G 
and a pre-filter F for two-degree of freedom system shown 
in Figure 8 to achieve a desired robust design over a speci-
fied region of plant uncertainty. In this paper, consider 
an uncertain plant p(s) is belonging to a set of possible 
plants ( , ),p s α  i.e. { }( ) ( , );p s p s p∈ α α∈ , where α  is the 
vector of uncertain parameters for uncertainty structured 
of p(s) (Amiri-M et al., 2009; Gharib et al., 2010; Gharib 
& Daneshvar, 2019; Gharib et al., 2011; Gharib & Moave-
nian, 2016; Horowitz, 1992; Jahanpour et al., 2015).

This section uses the QFT method (Amiri-M et  al., 
2009; Gharib & Moavenian, 2016; Jahanpour et al., 2015; 
Nataraj, 2002) to design a controller for each plane of the 
TRMS. The objectives of this section are to synthesize suit-
able controllers and pre-filters such that:

1. the closed-loop system is stable;
2. system tracks its desired input.
The stability margin is defined as:

( ) ( )
1.1

1 ( ) ( )
P j G j
P j G j
ω ω

<
+ ω ω

. (41)

The tracking specifications for closed-loop perfor-
mance are given in the form of upper and lower bounds 
in the frequency domain (an overshoot of less than 10 
percent and the settling time = 10 s). Usually, based on 
the simple second-order models to represent appropriate 
under- and over-damped closed-loop system, the follow-
ing is stated:

( ) ( )( ) ( ) ( )
1 ( ) ( )
P j G ja j F j b j
P j G j
ω ω

ω < ω < ω
+ ω ω

, (42)

a(jω) and b(jω) are the lower and upper bounds, respec-
tively.

At the first step of controller design, a set of working 
frequencies is selected. Since the plant uncertainty must 
be defined (Template Generation), thus, the boundary of 
the plant templates should be computed. The area on the 
Nichols chart, which defines a graphical representation 
of the uncertainties at each frequency, is called the plant 
template. These templates, related to the selected working 
frequencies, are then used together with the performance 
specifications to define regions (or the so-called bounds) 
in the frequency domain where the open-loop frequency 
response must lie to satisfy the performance and stability 
specifications. The stability bounds are calculated using 
these templates and the phase margin. The tracking per-
formance bounds are derived using the templates and the 
upper and lower limits on the frequency-domain respons-
es. The upper limit of the disturbance bounds is derived 
based on the disturbance rejection specifications. Some 
other performance bounds, such as control action bounds, 
noise rejections bounds, etc., are also derived based on the 
templates and the corresponding performance limits. Fi-
nally, the composite performance bounds are constructed 
by taking the most restrictive regions of all considered 
performance bounds.

To summarize, the controller designing steps are just 
illustrated for vertical motion. Figure 9 shows plant tem-
plates for the vertical plane on the Nichols chart. Robust 
margin bounds are depicted in Figure 10. Robust tracking 
bounds are also shown in Figure 11. Besides, the intersec-
tion of bounds is shown in Figure 12.

The controller design is undertaken on the Nich-
ols chart, considering the frequency constraints and the 
nominal loop 0( )L s of the system. At this point, the de-
signer begins to introduce controller functions (G(s)) and 
tune their parameters until the best possible controller is 
reached without violation of the frequency constraints. 
This process is called Loop Shaping.

One can design the controller using the QFT toolbox 
in MATLAB® so that the open-loop transfer function ex-
actly lies on its robust performance bounds and does not 
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Figure 7. Final responses

Figure 8. Structure of a two-degree of freedom system
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Figure 9. The boundary of the plant template for  
the vertical plane

Figure 10. The robust margin for vertical plane

Figure 11. The robust tracking for vertical plane

Figure 12. The intersection of bounds for the vertical plane

system response is satisfactory according to the problem 
requirements.

Loop and pre-filter shaping of the open-loop transfer 
function for the vertical motion are presented in Figure 
13 and Figure 14, respectively.

penetrate the U-contour at all frequency values (ωi). The 
experience of the designer is an essential factor in finding 
satisfactory controllers that not only comply with the fre-
quency restrictions but also provide the possible realiza-
tion, complexity, and quality.

Finally, the QFT design may be completed with a 
pre-filter (F(s)) design when it is required. In the case of 
tracking conditions, shaping on the Bode diagram may be 
used. Post design analysis is then performed to ensure the 

Figure 13. Loop-shaping in Nichols chart for the vertical plane

Figure 14. Pre-filter shaping for the vertical plane
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The respected controller and pre-filter for the vertical 
(Gv, Fv) and the horizontal (Gh, Fh) motions are found as 
follows:

2
3

2
2.94 6.44 6(

9
) 102.

1 8v
sG s
s s

s +
= ×

+
+

; (43)

3
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Figure 15 illustrates robust stability in the frequency 
domain for the vertical plane.

The time-domain closed-loop responses of vertical and 
horizontal motions, including the controller and pre-filter, 
are shown in Figure 16 and Figure 17, respectively. Re-
garding the simulation results, it can be seen that the QFT 
control approach not only overcomes the uncertainties of 
the TRMS but also can satisfy robust stability and tracking 
specifications of the system.

Conclusions

In this paper, the dynamic model of TRMS for motion in 
both vertical and horizontal planes has been introduced. 
For simplifying the modeling procedure, the TRMS mod-
el has been divided into the vertical and the horizontal 
planes and three sections for each plane. These sections 
are the DC-motors, the rotors, and the mechanics. To ob-
tain the transfer functions, the equations of the electrical 
and mechanical part of TRMS were linearized. Then, by 
simulation, the linear model was compared with the non-
linear one for each plane, which indicates that:

1. The linear model of the electrical part is fitted with 
the nonlinear model close to the working point for 
each plane, and the tail motor two curves are fitted 
tightly even far from the working point. The reason 
arises from disregarding the second-order term for 
the tail rotor.

2. The linear model of the overall system is fitted with 
the nonlinear one with some differences for each 
plane. One reason for this difference arises from the 
use of first-order Taylor approximation for obtain-
ing the linear model and some simplifications.

3. For the horizontal motion, the difference between 
the two curves is more dominant. One reason could 
be the existence of vθ  in the moment of inertia in 
the horizontal plane, which differs by changing it in 
the vertical angle. The other reason is that the model 
of the horizontal motion is more complicated than 
the model of the vertical motion.

Figure 15. Robust stability in the frequency domain for the 
vertical plane

Figure 16. Step response of the system for vertical motion

Figure 17. Step response of the system for horizontal motion
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With a short glance at Equation (39), it can be in-
tensely seen that the order of numerator in the second 
term is smaller than the order of numerator in the first 
term. There is not a crucial problem by ignoring the sec-
ond term, and eliminate the cross-coupling effect in the 
analysis of motion in the vertical plane.

At the end part of this paper, utilizing the QFT ap-
proaches as a famous and applicable designing robust 
controllers for the TRMS has been proposed. The simu-
lation results for tracking problem in vertical and hori-
zontal planes indicate successful implementation of ro-
bust controller design for TRMS motion, despite there 
are uncertainties.

Finally, by comparing the theoretical results of this 
article with the experimental results, we can state the ac-
curacy of the proposed simulation and controllers.
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Appendix

Nomenclature of the TRMS

This Appendix contains symbols with numerical values 
about the TRMS that have been used in this paper (Chris-
tensen et al., 2006; Feedback Instruments Ltd, 1998).

Symbol Description Value Unit
lc=lcb Length of counterweight beam 0.255 m
lmb Length of the main beam 0.24 m
ltb Length of tail beam 0.25 m

lmw The width of the main rotor blade 0.026 m
lml Length of the main rotor blade 0.281 m
ltw The width of the tail rotor blade 0.017 m
ltl Length of the tail rotor blade 0.180 m

rms The radius of the main shield 0.155 m
rts The radius of the tail shield 0.100 m
mc Mass of counterweight 0.068 kg
mcb Mass of counterweight beam 0.022 kg
mmb Mass of the main beam 0.0145 kg
mtb Mass of tail beam 0.0155 kg
mm Mass of main DC-motor with the main rotor 0.228 kg
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Symbol Description Value Unit
mt Mass of tail DC-motor with the tail rotor 0.206 kg

mms Mass of main shield 0.225 kg
mts Mass of tail shield 0.165 kg
mmr Mass of the main rotor 0.042 kg
mtr Mass of tail rotor 0.016 kg
mv Viscous friction constant in the vertical plane 0.0021 kgm2 / s
mh Viscous friction constant in the horizontal plane 0.0107 kgm2 / s
kh Spring constant 0.0093 kgm2 / s2

g Gravitationally acceleration 9.82 m / s2 
km Main motor constant 74.8 × 10–3 Nm / A
kt Tail motor constant 88.3 × 10–3 Nm / A

Ram The ohmic resistance of the main motor 6.82 Ω
Rat The ohmic resistance of the tail motor 8.05 Ω
Jam Total inertia is seen by the main motor 2.76 × 10–3 kgm2

Jat Total inertia is seen by the tail motor 0.5097 × 10–3 kgm2

Bam Main motor viscous friction constant 0.346 × 10–3 kgm2 / s
Bat Tail motor viscous friction constant 0.250 × 10–3 kgm2 / s
Dm Main motor drag friction constant 23.03 × 10–6 kgm2

Dt Tail motor drag friction constant N/A* kgm2

*Note that the drag effect is disregarded when estimating the parameters of the tail rotor, as leaving drag 
out of the model has no significant influence in the final fit.
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