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Introduction

Air transport in Colombia has been developing at an 
accelerated pace for about two and a half decades. This 
period coincides with the beginning of a continued im-
plementation of public policies, designed specifically for 
the sector of air transport to drive and promote it. Since 
the 1990s, the growth of air traffic in Colombia has been 
strengthened by the public policy of liberalization of air-
space in both domestic and international markets. In ad-
dition it has been reinforced by the reorientation of public 
and private investment toward modernizing and updating 
airport infrastructure through concessioning the busiest 
airports in the country (Díaz Olariaga & Ávila, 2015). The 
first generation of airport concessions was implemented in 
the mid-1990s and since then three additional generations 
have taken place (Díaz Olariaga, 2017). In the commercial 
aviation sector, the national airline was privatized during 
the same period and new (private) air carriers entered the 
market, including low-cost carriers (LCC). Since 2012, 
airfares are completely deregulated (Díaz Olariaga & Zea, 
2018).

As a result of public policies, both of privatization and 
public investment in airport infrastructure (together with 
deregulating policies in the commercial aviation sector), 
passenger transport in Colombia has increased 863% 
(Aerocivil, 2019) during the last 15 years. This significant 
growth has been boosted and led by the main airport 
in Colombia, Bogotá-El Dorado International Airport 
(hereafter BOG), in the country’s capital city. However, 
the master plans for BOG (as well as several questionable 
studies and reports) predict growth in demand. Which 
implies that the airport’s present capacity (as it has no 
plans to expand) will not meet the anticipated demand. 
This situation prompted the public sector to approve the 
construction of a new airport in the outskirts of the city, 
which is supposed to start operating in 2025/2026.

Forecasts are a crucial aspect of airport planning for 
determining future capacity requirements. Since airport 
infrastructure projects are expensive and involve many 
resources, an understanding based on data for future de-
mand provides planners with necessary information for 
prospective decision-making in the short, medium and 
long term. Said data includes the expected number of 
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aircraft movements, passenger traffic, and air cargo vol-
umes. Therefore, despite unforeseen circumstances, the 
airport and aviation industry (airlines, aircraft manufac-
turers and aviation engines, air navigation service pro-
viders, etc.) require forecasts to anticipate future scenar-
ios (Kazda & Caves, 2015; de Neufville & Odoni, 2013; 
Horonjeff et al., 2010). In regards to forecast horizons in 
the airport industry, it is common to make short-term 
forecast (next season, within the same year), short-term 
(1 year), medium-term (5 years), and long-term (20–25 
years) (ACI, 2016; ICAO, 2006).

Therefore, the goal of this article is to carry out a fore-
cast for BOG (passengers, air cargo, and air operations 
or aircraft movements) in the medium-term. To this end, 
and as a calculation methodology (unique for this type of 
analysis of air traffic), (DLM) will be used, which in com-
parison with usual methods for forecast calculation, pre-
sent the following advantages: detecting stochastic trends 
hidden in time series (West & Harrison, 2006), as well as 
structural changes that allow estimating the variable ef-
fect in time of exogenous shocks without increasing the 
number of parameters (Honjo, Shiraki, & Ashina, 2018). 
Furthermore, the structure of conditional independence 
(on which the state dynamics are based) allow for an in-
terpretation of forecasts through a recursive algorithm 
(Petris, Petrone, & Campagnoli, 2009).

The present investigation is organized as follows: in 
the section Literature Review the current review of exist-
ing literature is carried out in two aspects. The first is on 
the investigations (type and approach) carried out in a 
context of liberalization of the aviation or air transport 
industry (worldwide), as it is the framework for the basis 
of this research. The second aspect focuses on the pres-
entation of research and the methods used by academics 
to carry out air traffic forecasts. Subsequently the Meth-
odology and Data section describes the methodology 
used in the research: (DLMs), and the type and origin of 
the data used in the calculations. In the following sec-
tion, the Application Case (or Case Study) is presented, 
i.e. the information and general data of the airport for 
which the traffic prognosis is developed. In the next and 
penultimate section, all the results are presented and 
analyzed. In the concluding section the final results of 
the investigation are revealed.

1. Literature review

There are many studies that address the various aspects 
of the liberalization of the air transport market and in-
dustry. These studies deal with issues such as the spatial 
effects of deregulation on connectivity and accessibility 
(Díaz Olariaga & Carvajal, 2016; O’Connor, 2003; Bow-
en, 2002, 2000; Ivy, 1995; Chou, 1993), market compe-
tition and consolidation (Goetz, 2002; Goetz & Sutton, 
1998; Debbage, 1993; Graham, 1993), network structures 
(Díaz Olariaga & Zea, 2018; O’Kelly, 1998; Shaw and Ivy, 
1994; Shaw, 1993), airfare prices (Vowles, 2006; Stavins, 

2001; Oum et al., 1996), and airline alliances (Fan et al., 
2001; Oum, Yu, & Zhang, 2001; Vowles, 2000; Youssef 
& Hansen, 1994). Other studies focus on the analysis of 
diverse situations (e.g. demand behavior), in the post lib-
eralization context, particularized in certain countries or 
regions; in addition to the countless jobs in relation to the 
United States, we have, for example, from Europe (Eriks-
son & Pettersson, 2012; Fan, 2006; Goetz & Graham, 
2004; Thompson, 2002; Graham, 1998, 1997; Ivy, 1995; 
Dennis, 1994), from Canada (Oum, 1991), from Aus-
tralia (Hooper, 1998; Forsyth, 1991), from Asia (Bowen, 
2000; Bowen & Leinbach, 1995), from Brazil (Oliveira, 
Lohmann, & Costa, 2016; Koo & Lohmann, 2013), from 
Central and Eastern Europe (Jankiewicz & Huderek-
Glapska, 2015), from Africa (Njoya, Christidis, & Niki-
tas, 2018; Abate, 2016; Dobruszkes, Mondou, & Ghedira, 
2016; Njoya, 2015; Surovitskikh & Lubbe, 2015; Ismaila, 
Warnock-Smith, & Hubbard, 2014; Daramola & Jaja, 
2011), and finally from Colombia, where there is only 
one related research, that of Díaz Olariaga et al. (2017). 
From the perspective of public policy, Koo and Lohmann 
(2013) examine the relationship between the volatility of 
aeronautical public policy and the spatial evolution of the 
air transport supply. These authors focus on the domestic 
aviation sector of two comparative cases: Australia and 
Brazil. On the other hand, Rolim et al. (2016) analyze the 
development of demand in recently privatized airports, 
such as in Brazil. Changes in traffic concentration at air-
ports as a result of liberalization have also been analyzed 
(Díaz Olariaga & Zea, 2018; Koo, Tan, & Duval, 2013; 
Halpern, 2011; Derudder & Witlox, 2009; Dobruszkes, 
2009; Papatheodorou & Arvanitis, 2009).

Regarding the methods for forecasting, the air trans-
port industry has been addressing the issue of traffic prog-
nosis for at least six decades. However, academics only 
began to present formal studies and research about three 
decades ago. During this time a variety of models have 
been developed to predict the demand of passengers. The 
most used prediction methods can be classified into two 
large groups: economic models and time-series models 
(Dantas, Oliveira, & Repolho, 2017). The economic meth-
ods focus on the correlation between the demand of pas-
sengers and multiple variables, which are considered to 
be influential in the change of the economic environment 
and traffic system. The forecast models are established 
through a series of equations. Commonly used models 
include regression analysis (Abed, Ba-Fail, & Jasimuddin, 
2001), causality test (Fernandes & Pacheco, 2010), logit 
model (Garrow & Koppelman, 2004), and gravitational 
models (Grosche, Rothlauf, & Heinzl, 2007). Time se-
ries methods primarily rely on historical data to predict 
by extracting the intrinsic relationship between current 
data and past observations. The various time-series mod-
els have been used to forecast passenger demand, such 
as smoothing techniques (Samagaio & Wolters, 2010), 
the adapted Markov model (Chin & Tay, 2001), ARIMA/ 
SARIMA (Tsui et al., 2014), seasonal adjustment method 
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(Aston & Koopman, 2006), etc. However, due to the non-
linear nature of passenger demand, economic and time-
series approaches are severely criticized for their limited 
and ineffective forecasting (Tsui et  al., 2014). Therefore, 
some academics try to explore other methods, such as ar-
tificial intelligence (for example, neural networks), which 
is characterized by self-adaptation and non-linearity and 
can map arbitrary functions (Jin et al., 2020; Xiao et al., 
2014). Regarding the methodology used in the present 
investigation DLMs virtually no related publications have 
been found. Thus the interest and motivation to test this 
technique to evaluate behavior and reliability in the pre-
diction of typical air traffic variables and their positive 
benefits (cited in the Introduction and more developed in 
the Methodology section).

2. Methodology and data

In any statistical application, a crucial and challenging 
step is to carefully specify the model. The first strategy 
is a static model, where the effect of time does not play 
a prominent role. For this research, Dynamic Models 
(DMs) have been chosen. Unlike static models, some ele-
ments that participate in the construction of the model 
do not remain invariable but are considered as functions 
of time describing temporal trajectories (Glynn et  al., 
2019; Laine, 2019; McAlinn & West, 2019; Pole, West, & 
Harrison, 2018).

DMs have the advantage of having “dynamics” in the 
model’s parameters, thereby rendering the parameters not 
fixed but changing or dependent on time. Their main ap-
plication is the analysis of time series. They also have the 
advantage of being useful to perform sequential analyses 
because the updating of parameters is carried out based 
on the data that has been obtained sequentially.

The development of forecasts is usually based on au-
toregressive models, moving averages or their combina-
tion. However, such models have a complicated verisi-
militude function and due to this the final distribution 
of parameters inherit the same difficulty. Based on the 
aforementioned, DLMs, which are a particular case of 
DMs, are used for modeling time series in order to carry 
out forecasts by distributions of stochastic variables that 
influence observations in time. One of their advantages 
is that by using them one realizes that they are simpler 
models, yet powerful enough to adjust and forecast data 
and they may include explanatory variables in a simple 
way (Sargan & Bhargava, 1983; Ahn & Schmidt, 1995; 
Arellano & Bond, 1991; Arellano & Bover, 1995; Gel-
man et al., 2013; Kenkel, 2018). DLMs are defined under 
the following structure for each time t (Valencia & Cor-
rea, 2013; Bolstad, 2007; Glynn et al., 2019; Asparouhov, 
Hamaker, & Muthén, 2018). Let 1, 2, ,( , , , )´t t t k tY Y Y Y= …  
represent observations at time t. Hence each Yt is a k × 
1 vector. Furthermore, let ( )1, 2, ,, , , ´t t t q tθ = θ θ … θ  be the 
true q processes of interest. We express the DLM with the 
following equations:

Observation equation: Yt = Ft θt + Vt, (1)

System equation: θt = Gt θt–1 + Wt, (2)
where:
Ft is a matrix of a dynamic regression.
Gt is a matrix of a state.
Vt is a matrix of a observational variance, Vt ~N(0,Vt)
Wt is a matrix of evolution,Wt ~N(0,Wt)
θt is a vector of parameters.

In time 0 a priori distribution is postulated for 0 0( )Dθ  
where D0 represents available information until time zero. 
West and Harrison (2006) suggest ( )0 0 0 0( ) ,D N m Cθ ∼ , 
where m0 and C0 are the vector of averages and the matrix 
of variances and covariances, respectively.

The observation equation defines the observational 
model for an answer Yt. and its relation with p covariables 
or explanatory variables Ft. The first explanatory variable 
is generally a constant or intercept that represents the lev-
el of the series. As Ft is univariate, then θt is a vector of 
the form ( 0 1 1, , , )'t t p t−θ θ … θ . It is possible to consider Yt 
as multivariate, in which case θt. is a matrix of dimension 
m × p, m0 it’s a vector of zeros and C0 it is the diagonal 
matrix of variances and covariances.

The system equation presents the evolution of the pa-
rameters in time. If the model includes p changing coef-
ficients, it will result in the evolution to be defined as a 
transition matrix Gt of dimension p × p, where p rep-
resents the number of covariates in each of the models.

Finally, DLMs present errors vt and wt with vari-
ances dependent on time Vt y Wt that denote the matrix 
of observational variance and the evolution of variance, 
respectively.

When dealing with temporal series, it is important to 
consider that, for DLMs, a source of variability that works 
for representing errors in the observation equation and in 
the system’s equation is known as a vector of permanent 
effects. Even though it appears to have more limitations, 
some classical models of time series are presented as a 
particular case, especially ARMA models, for theoreti-
cal relationships of dynamic linear models with ARIMA 
models see Durbin and Koopman (2012), Tsui et  al. 
(2014), Box et al. (2016) and Wei (2006). They are dealt 
with through Kalman’s filter, when the error terms in the 
observation equation follow a normal distribution, they 
are independent and are distributed identically in average 
0 and known variance.

For the proposed models, 5 chains of the MCMC 
(Markov Chain Monte Carlo) sampler were made, with 
100,000 iterations each, discarding the first 10,000 first 
iterations, using the JAGS (Just Another Gibbs Sampler) 
methodology (Plummer, 2003). To determine the con-
vergence of the chains, the Gelman-Rubin R-hat statistic 
(Gelman et al., 2013) will be used using the “coda” library 
of the R software (Plummer et al., 2006), which to present 
values below 1.1.
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In order to dermine the strength in numerical terms 
of the proposed model, Mean Absolute Percentage Error 
(MAPE) will be used, which measures the size of error 
(absolute) in percentage terms. The fact that the magni-
tude of percentage error is estimated, it renders it an in-
dicator frequently used by forecast developers due to its 
easy interpretation. A small MAPE value indicates that 
forecasts have a higher likelihood of being accurate (S. 
Kim & H. Kim, 2016; Ren & Glasure, 2009).

There is data available about air traffic in the airport of 
study (passengers, air cargo and operations or air move-
ments) during the last four decades (1979–2017) (Aero-
civil, 2019). Likewise, socioeconomic data is available for 
the city where the airpt is located (GDP, GDP/per capita, 
population, etc.) (DANE, 2019; Banco de la República de 
Colombia, 2019). According to the chosen variables as co-
variables, a medium-term forecast will be presented due 
to the changing economic conditions and their effects on 
air traffic. For that purpose, years 2018 to 2022 will be 
forecasted. To achieve such forecast, first forecasts should 
be carried out using ARIMA models (Brooks, 2008) on 
the covariables chosen in order to include these new vari-
ables in the selected model, thereby attempting to obtain 
a relatively low MAPE.

3. Application case

In Colombia, the aviation industry has been liberalized 
since the beginning of the 1990s and airfares are com-
pletely deregulated since 2012. Within the national con-
text, the case of Bogotá-El Dorado International Airport 
(IATA code: BOG; OACI code: SKBO) has been selected. 
This is the main airport in the country and the main coun-
try hub, situated in the city of Bogotá (capital of Colom-
bia, and with more than 8 million inhabitants), about 7.5 
miles from the city center. The airport is a public property 
but it has been concessioned to the private sector since 
2007 (Díaz Olariaga, 2017), a year when the airport de-
veloped its first significant expansion in infrastructure and 
facilities (with an investment of $650 million), which was 
finished in 2013. In 2015, a second expansion began which 
finished at the end of 2018. About 25,000 people work at 
the airport. Total traffic data (for 2017): 30M Pax, 690,000 
Tn air cargo, 320,000 operations (or aircraft movements) 
(Aerocivil, 2019).

4. Results

Bayesian statistics present an ideal alternative to make 
models without the problem of updating data presented 
by classical statistics. One of the advantages is obtaining 
the new information, since a posteriori distribution can 
be updated and will be used as an a priori distribution, 
obtaining a new, more updated a posteriori distribution. 
This is a great advantage of Bayesian analysis because 
classical analysis requires everything to be recalculated as 
more data appears (Bolstad, 2007). In the calculation of 
the different forecasts for the auxiliary variables, ARIMA 

models were used and subsequently the DLMs, with their 
respective MAPE analysis, to choose the best model for 
each of the variables.

In the case of the variable “national (or domestic) 
passengers” Consumer Price Index (CPI) was used as an 
auxiliary variable to estimate the future forecast. Figure 1 
shows the result.

In Figure 1 Model 1 is presented, where the behavior 
of estimated values for the chosen model is shown. These 
values overlap with the behavior of the original values. 
1,08% MAPE can also be observed (see Table 1). To esti-
mate the forecast, ARIMA (2,1,0) model was used in the 
variable CPI in order to carry out 5 years forecast and for 
it to be included in the variable of national passengers.

The final model has the following structure:

0 1 1t t t t ty CPI v= β +β + ; (3)

0 0, 1
1

1( , )tN
h−β ∼ β ; (4)

1tβ ~ 1, 1
2

1( , )tN
h−β ; (5)

0

1

t
t

t

β 
θ =   β 

; (6)

11t tF CPI =   ; (7)

1 0
0 1tG
 

=   
 

. (8)

In the case of the variable “international passengers” 
GDP, Population and Currency Exchange Rate (in Span-
ish TRM) were used as auxiliary variables to estimate the 
future forecast, thereby obtaining the results shown in 
Model 2 (see Figure 2).

Figure 1. Model 1, forecast for the variable  
“domestic passengers”
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Table 1. Comparison of MAPE values for Model 1

Model MAPE Variables

1 0,01082 National passengers, CPI
2 0,01630 National passengers, GDP per capita
3 0,02560 National passengers, national passengers 

with delay t-1
4 0,02884 National passengers, per capita GDP, CPI
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In Figure 2 Model 2 is presented, where the behavior 
of estimated values for the model chosen is shown. These 
values overlap with the behavior of the original values. 
0,97% MAPE can also be observed (see Table 2). To es-
timate the forecast, ARIMA (3, 1, 0) model was used in 
the variable GDP, ARIMA (1, 1, 0) model in the variable 
population, and ARIMA (2,  1,  0) model in the variable 
TRM in order to carry out 5 years forecast and for it to be 
included in the variable of international passengers.

The final model has the following structure:

0 1 1 2 2 3 3t t t t t t t t ty GDP population TRM v= β +β +β +β + ; (9)

0 0, 1
1

1( , )tN
h−β ∼ β ; (10)

1tβ ~ 1, 1
2

1( , )tN
h−β ; (11)

2 2, 1
2

1( , )tN
h−β ∼ β ; (12)

3 3, 1
3

1( , )tN
h−β ∼ β ; (13)

0

1

2

3

t

t
t

t

t

β 
 β θ =  β
  β 

; (14)

21 11
tt t tF CPI population TRM −

 =   ; (15)

4 4

1 0

0 1
t

x

G
 
 

=  
 
 



  



. (16)

In the case of the variable “operations” (take-offs/
landings, where national and international operations 
are included), GDP per capita, Population and Currency 
Exchange Rate (in Spanish TRM) were used as auxiliary 
variables to estimate the future forecast, thereby obtaining 
the results shown in Model 3 (see Figure 3). In Figure 3 
Model 3 is presented, where the behavior of estimated val-
ues for the chosen model is shown. These values overlap 
with the behavior of the original values. 0,24% MAPE can 
also be observed (see Table 3). To estimate the forecast, 
ARIMA (3, 1, 0) model was used in the variable GDP per 
capita, ARIMA (1, 1, 0) model in the variable population, 
and ARIMA (2, 1, 0) model in the variable TRM in order 
to carry out 5 years forecast and for it to be included in 
the variable of operations.

The final model has the following structure:

0 1 1 2 2

3 3

_ _
;

t t t t t t

t t t

y GDP per capita population
TRM v
= β +β +β +

β +  (17)

0 0, 1
1

1( , )tN
h−β ∼ β ; (18)

1tβ ~ 1, 1
2

1( , )tN
h−β ; (19)

Figure 2. Model 2, forecast for the variable  
“international passengers”
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Table 2. Comparison of MAPE values for Model 2

Model MAPE Variables

1 0,0097555 International passengers, GDP, 
population, TRM

2 0,0111818 International pasengers, TRM
3 0,0114201 International passengers, population
4 0,0122443 International passengers, GDP
5 0,0137127 International passengers, GDP, TRM
6 0,0156288 International passengers, GDP, 

population
7 0,0163126 International passengers, GDP
8 0,0195899 International passengers, international 

passengers with delay t-1

Figure 3. Model 3, forecast for the variable  
“operations (or aircraft movements)” (total: nat. + intl.)

0,000
0,050
0,100
0,150
0,200
0,250
0,300
0,350
0,400

O
p

er
at

io
n

s 
(m

il
li

o
n

s)

Operations Forecast

Table 3. Comparison of MAPE values for Model 3

Model MAPE Variables

1 0,00245412 Operations, GDP per capita, 
population, TRM

2 0,00259602 Operations, population, TRM

3 0,00266953 Operations, GDP per capita, TRM

4 0,00418937 Operations, TRM

5 0,00439192 Operations, Operations with delay t-1

6 0,0047898 Operations, GDP per capita

7 0,00646659 Operations, GDP per capita, population

8 0,00839123 Operations, population
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2 2, 1
2

1( , )tN
h−β ∼ β ; (20)

3 3, 1
3

1( , )tN
h−β ∼ β ; (21)

0

1

2

3

t

t
t

t

t

β 
 β θ =  β
  β 

; (22)

21 11 _ _
tt t tF GDP per capita population TRM −

 =  ; (23)

4 4

1 0

0 1
t

x

G
 
 

=  
 
 



  



. (24)

In the case of the variable “national (or domestic) air 
cargo”, GDP a per capita and population were used as aux-
iliary variables to estimate the future forecast, thereby ob-
taining the results shown in Model 4. In Figure 4 Model 3 
is presented, where the behavior of estimated values for 
the chosen model is shown. These values overlap with the 
behavior of the original values. 0,42% MAPE can also be 
observed (see Table 4). To estimate the forecast, ARIMA 
(3, 1, 0) model was used in the variable per capita GDP 
and ARIMA (1, 1, 0) model in the variable population in 
order to carry out 5 years forecast and for it to be included 
in the variable national air cargo.

The final model has the following structure:

0 1 1 2 2_ _t t t t t t ty GDP per capita population v= β +β +β + ;
(25)

0 0, 1
1

1( , )tN
h−β ∼ β ; (26)

1tβ ~ 1, 1
2

1( , )tN
h−β ; (27)

2 2, 1
2

1( , )tN
h−β ∼ β ; (28)

0

1

2

t

t t

t

 β
 

θ = β 
 β 

; (29)

1 21 _ _t t tF GDP per capita population =   ; (30)

3 3

1 0

0 1
t

x

G
 
 

=  
 
 



  
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. (31)

In the case of the variable “international air cargo”, 
GDP and international trade (imports and exports) were 
used as auxiliary variables to estimate the future forecast, 
thereby obtaining the results shown in Model 5 (see Fig-
ure 5).

In Figure 5 Model 5 is presented, where the behavior 
of estimated values for the chosen model is shown. These 
values overlap with the behavior of the original values. 
0,63% MAPE can also be observed (see Table 5). To esti-
mate the forecast, ARIMA (3, 1, 0) model was used in the 
variable GDP, ARIMA(1, 1, 0) in the variable imports, and 
ARIMA (1, 1, 0) model in the variable exports in order to 
carry out 5 years forecast and for it to be included in the 
variable international air cargo.
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Figure 4. Model 4, forecast for the variable  
“national (or domestic) air cargo”

Table 4. Comparison of MAPE values for Model 4

Model MAPE Variables

1 0,0042948 National air cargo, GDP per capita , 
population

2 0,00438331 National air cargo, population
3 0,00951284 National air cargo, GDP per capita
4 0,01479821 National air cargo, national air cargo 

with delay t-1

Figure 5. Model 5, forecast for the variable  
“international air cargo”
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Table 5. Comparison of MAPE values for Model 5

Model MAPE Variables

1 0,00633563 International air cargo, imports, exports
2 0,00750094 International air cargo, GDP, exports
3 0,00762745 International air cargo, GDP, imports, 

exports
4 0,00840434 International air cargo, GDP, imports
5 0,00891068 International air cargo, international air 

cargo with delay t-1
6 0,01684195 International air cargo, exports
7 0,02385259 International air cargo, imports
8 0,02820351 International air cargo, GDP
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The final model has the following structure:

0 1 1 2 2imports exportst t t t t t ty v= β +β +β + ; (32)

0 0, 1
1

1( , )tN
h−β ∼ β ; (33)

1tβ ~ 1, 1
2

1( , )tN
h−β ; (34)

2 2, 1
2
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h−β ∼ β ; (35)
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. (38)

Conclusions

Air traffic forecasts are essential in airport planning for 
determining future capacity requirements. Since airport 
infrastructure projects are expensive and involve many 
resources, an understanding based on data from future 
demand provides airport planners with the necessary in-
formation for effective decision-making in the short, me-
dium and long term. Therefore, regardless of unforeseen 
circumstances, the airport industry requires forecasts to 
anticipate future scenarios.

Considering the advantages of using DLMs in the 
forecast of time series, an initial description of variables 
was made, revealing a growing behavior as well as strong 
correlations in time with the covariables. Regarding the 
covariables presented in the models, an ARIMA model 
was used to carry out the future forecast and the values 
to be included in the model chosen. In order to test the 
convergences of the chains, the R-hat test was applied, 
which showed values in the test of R-hat < 1.1 in all the 
final models chosen. The result of the application of DLMs 
presents MAPE values below 1%, which ensures high pre-
dictability forecasts. Furthermore, it could be verified that 
when the model chosen is contrasted with models that 
compared the variable with delay t-1 (which is equivalent 
to AR(1) models), DLMs showed an acceptable perfor-
mance as alternative models to develop reliable forecasts 
in air transport (or air traffic prognosis), at least in the 
medium term.

As seen in the results obtained, the DLMs showed ex-
cellent performance by giving a new, and to some extent, 
original alternative to develop reliable forecasts in air traf-
fic (no investigations were found that use the DLMs for 
calculating forecasts in the field of air traffic). However, 
the present investigation focused on a medium-term prog-
nosis (5 years), and with an important historical series 
(39 years), thus the next phase of research will be to test 

the performance and reliability of the method for calculat-
ing a forecast in a long-term period (20–25 years – usual 
requirement of airport planners) by using a similar his-
torical series.
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