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Abstract. In this research, based on heuristic optimization algorithms, three new strategies are developed for Aerodynamic 
Parameters Estimation (APE) of one pair ON-OFF actuator rolling airframe. In the 1st method namely EAM-PSO the 
aerodynamic parameters are directly estimated. While, the next two algorithms called EBM-PSO and SEBM-PSO are two-
step strategies. In the 1st step the aerodynamic forces and moments are estimated, then after passing through a designed 
smoothing filter, in the 2nd step aerodynamic parameters are estimated. In EBM-PSO all the aerodynamic parameters are 
estimated at once by solving one optimization problem. In SEBM-PSO the APE is converted to solve four separate opti-
mization problems. A modified particle swarm optimization algorithm is developed and used in estimation process. The 
performance of proposed algorithms is compared with that of state of the art algorithm EKF. The simulation results show 
that SEBM-PSO and EBM-PSO are better than EAM-PSO in term of accuracy and run time.

Keywords: aerodynamic parameter estimation, estimation after modelling, estimation before modelling, particle swarm 
optimization, smoothing filter.

Introduction

An accurate aerodynamic model is crucial for develop-
ing high fidelity flight simulations and designing efficient 
control systems. Computer-based methods like theoreti-
cal-empirical relations and computational fluid dynamic 
(CFD) method as well as experimental approaches in-
cluding wind tunnel and flight test are common ways to 
estimate the aerodynamic characteristics. The theoretical-
empirical methods have a low accuracy relating to some 
simplifications done for their relations derivation. CFD 
methods are time consuming. Both of computer-based 
methods are sufficient for first design steps, but for more 
accurate results, we need to use experimental approaches. 
The wind tunnel test approach, itself, has uncertainties 
arising from scaled models and wind tunnel walls effect. It 
also has limitations in simulating the vehicle’s whole flight 
envelope. Flight test method is the most accurate approach 
for all flight conditions. Therefore, during last decades, 
several approaches have been developed for APE based 
on flight test data. These approaches can be categorized as 
classic filter-based approaches, intelligent algorithms, and 
heuristics optimization methods.

There are various researches in literature utilizing clas-
sic filters for APE problem. The observer/Kalman filter 

identification method is applied to the problem of online 
system identification of an aircraft (Valasek & Chen, 2003). 
Based on real flight test data, three recursive parameter es-
timation algorithms including EKF, simplified Unscented 
Kalman Filter (UKF) and UKF are compared for APE of 
two aircrafts (Chowdhary & Jategaonkar, 2009). EKF based 
technique for the calibration of various parameters meas-
ured by air data system of an aircraft is studied in (Kamali 
et al., 2016). In Bayoğlu and Nalci (2016) an adaptive KF 
is applied to APE for a supersonic missile having rapid 
speed variations. A two-step methodology, studied in Mo-
szczynski, Leung, and Grant (2019), in which an adap-
tive maximum aposteriori trajectory estimation scheme 
is adopted for accurate dynamic model identification. 
Two concepts namely Estimation After Modeling (EAM) 
and Estimation Before Modeling (EBM) are introduced 
for the first time by (Mohammadi & Massoumnia, 2000). 
According to EAM strategy, the aerodynamic parameters 
are directly estimated from the measured data. This is the 
most common approach have been used by researchers. 
While, in EBM method two extra sensors are needed and 
estimation is done in two steps. In that article, in first step, 
aerodynamic forces and moments were estimated using 
Frazier smoother, and in second step, APE is done using 
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EKF. Classic filters are more convenient but they have 
some limitations: Kalman filter is optimal only for linear 
systems with Gaussian noise. EKF and UKF methods are 
used for nonlinear systems, but the problem associated 
with them is greatly attributed to their needed approxi-
mations in linearization process (Moszczynski, Leung, & 
Grant, 2019).

Intelligent algorithms like fuzzy and neural networks 
methods are knowledge-based techniques, can do tasks 
based on the data given for training or previous experi-
ences. The learning process itself may take a very long 
time and there is usually no guarantee to success (Ku-
mari, Sunita, & Smita, 2013). Intelligent algorithms like 
neural network and fuzzy control are also applied to the 
APE problem. Modeling and identification of spacecraft 
system using adaptive neuro-fuzzy inference systems is 
performed in (Hanafy, Al-Harthi, & Merabtine, 2014). 
Hatamleh et  al. (2015) have focused on estimating un-
known dynamics model parameters of an unmanned 
quadrotor under presence of noisy feedback signals, where 
iterative bi-section shooting method, artificial neural net-
work method and a hybrid approach are used.

In current decade, nature inspired heuristic optimiza-
tion algorithms methods are also implied to the parameter 
estimation problem. A review of intelligent algorithms 
including genetic algorithm, particle swarm optimization 
(PSO) and artificial bee colony algorithms is proposed in 
Wang et al. (2013) for aircraft APE. Taboo continuous ant 
colony system method (Nobahari & Sharifi, 2014), is used 
in Rezaei (2015) to estimate aerodynamic coefficients of a 
rolling airframe. Propeller z-force and pitching moment co-
efficients of a small unmanned aerial vehicle are estimated 
through a modified PSO in Tieying, Jie, and Kewei (2015), 
which in, accelerations, deflection angle, and pitch rate are 
taken as observations. A new optimization algorithm called 
adaptive chaotic mutation PSO is proposed to perform APE 
for a spinning symmetrical projectile (Guan et al., 2016), 
where, only aerodynamic drag and lift coefficients are es-
timated. Bian et  al. (2016) presented an improved PSO 
method, which in every particle will do a local search before 
updating the global velocity and position. Then, the global 
best particle is created by a certain number of elitist parti-
cles. This algorithm is used to identify stability and control 
derivatives for an experimental small unmanned helicopter. 
The advantage of heuristics algorithms is their global search 
capability. But, they suffer from high computational time 
problem (Sone & Yadav, 2015).

The current research concentrates on developing new 
APE algorithms for a one pair ON-OFF actuator rolling 
airframe, based on heuristic optimization approaches. PSO 
algorithm is selected because of its capabilities in finding 
global optima in continuous optimization problems. Most 
APE algorithms are based on the conventional strategy 
namely EAM. In the current research, a new EAM based 
PSO algorithm, namely Estimation After Modeling Particle 
Swarm Optimization (EAM-PSO) is developed. In addition, 
two novel strategy namely Estimation Before Modeling 

Particle Swarm Optimization (EBM-PSO) and Separated 
Estimation Before Modeling Particle Swarm Optimization 
(SEBM-PSO) are developed and applied to the APE prob-
lem. EBM-PSO algorithm is a two-step strategy: In 1st step, 
the aerodynamic forces and moments are estimated, then 
after passing through a designed smoothing filter, in 2nd 
step, aerodynamic parameters are estimated. In EBM-PSO, 
the aerodynamic parameters are estimated via solving a sin-
gle optimization algorithm based on a modified version of 
PSO. The derived formulation makes it possible to eliminate 
the numerical integration process and hence decreasing the 
computational time. Utilizing the symmetrical properties of 
rolling airframes, the aerodynamic parameters can be es-
timated by solving separate optimization algorithms. This 
resulted in SEBM-PSO algorithm. SEBM-PSO provides 
more exact results. The performance of newly developed 
algorithms and EKF, as a state of the art algorithm, are 
compared. It is shown that SEBM-PSO and EBM-PSO al-
gorithms provide more exact results in comparison to those 
of EAM-PSO and EKF algorithms. EBM-PSO and SEB-
PSO also have better run time than EAM-PSO because of 
eliminating the numerical integration during optimization 
algorithm iterations.

This paper is organized as follows: In section 1, the 
rolling airframe equations of motion are illustrated. Sec-
tion 2 is devoted to the proposed modified particle swarm 
optimization (PSO) algorithm. In section 3, EAM-PSO 
method in addition to EBM-PSO method are explained 
in details. Simulation results are discussed in section 4, 
and finally conclusions are presented.

1. Airframe equations of motion

The vehicle of concern is a roll-stabilized airframe with 
one pair ON-OFF actuator. For modeling this vehicle, it is 
assumed that the thrust vector is fixed through the center 
of gravity and coincide with the body frame x-axis, the 
airframe is rigid, Vehicle has an axis-symmetric and cru-
ciform shape, so that the moments of inertia Iyy(t) and 
Izz(t) are identical and products of inertia moments can 
be discarded.

Since, vehicle is modeled as symmetric in pitch and 
yaw planes (Aksu, 2013), the aerodynamic coefficients Cy 
and Cn are identical to Cz and Cm respectively. Therefore, 
we have;

, , ,
, ,

y z yr zq y r z e
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Taken into consideration the above assumptions, the 
equations of motion in the body-fixed frame are as follows;
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where, u, v, and ware velocity components in body-fixed 
coordinate system, p, q, and r are vehicle angular rates, 
ϕ, θ, and ψ are Euler angles, D is body diameter, S is a 
reference area and Q is the dynamic pressure. In presence 
of wind [uwind, vwind. wwind], total velocity VT, angle of at-
tack α, and sideslip angle β can be determined as follows 
(Vitale, 2013):

2 2 2( ) ( ) ( )T wind wind windV u u v v w w= − + − + − ; (11)

arctan wind

wind

w w
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 −
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 −
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. (13)

Here, it is assumed that wind effect is negligible in 
comparison to vehicle velocity and one can say:

2 2 2
TV u v w= + + ; (14)

arctan w
u

 α =  
 

; (15)
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T

v
V
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. (16)

2. Modified particle swarm optimization 
algorithm

The original PSO, first developed by (Kennedy & Eber-
hart, 1995), is inspired by the social behaviors observed 
in flocks of birds and schools of fish. The main feature of 
PSO is that it works in continuous search spaces. Consid-
ering the algorithm proposed by (Karimi, Pourtakdoust, 
& Nobahari, 2011), which is a PSO-based constrained 
optimization algorithm, a non-constrained version of 
this algorithm is developed here. It starts with an initial 
population of randomly generated particles. For a search 
problem in a D-dimensional space, a particle represents a 

potential solution presented by its velocity and position. 
During a search process, each particle is attracted by its 
previous best particle (Xbest) as well as its neighborhood 
best particle (Xlbest). The swarm uses two equations to up-
date each particle’s velocity and position.

( ) ( )+ = + − + −1
, , 1 1 , , 2 2 , ,
k k k k k k
i j i j besti j i j lbesti j i jV wV c r X X c r X X ; 

(17)
+ += +1 1

, , ,
k k k
i j i j i jX X V , (18)

where, Vi,j and Xi,j are the velocity and position of particle 
i in jth dimension of search space, k = 1,…, Nitr is number 
of iteration index, i = 1,…,Np is number of particles index, 
j = 1,…,D is number of dimension index, Xbesti,j is local 
best position, i.e. it represents the best experience of in-
dividual particle, Xlbesti is the neighborhood best position 
or the best experience of ith particle neighbors, c1 and c2 
are two positive constants which represent the confidence 
for the experience of individual particle and neighbors, 
here c1 = c2 = 1, both r1 and r2 are two uniformly distrib-
uted random values between [0,1] that avoid falling into 
the local optimal, w is an inertial weight which represents 
the confidence of the previous velocity, here w is set to be 
uniformly distributed random values between [0,1].

To prevent particles from leaving the boundaries of 
search space, the velocity of particles is also clamped 
with a predefined maximum value Vmax. In this way, each 
dimension of the search space is normalized to vary be-
tween [0, 1] and maximum velocity of particles in each di-
mension of search space is set to Vmax= 0.2. Therefore, the 
velocity vector of the saturated particles is randomized as:

+ +
+

+

 ≤= 
− >

1 1
, , max1

, 1
max max , max( , )

k k
i j i jk

i j k
i j

V if V V
V

rand V V if V V
. (19)

2.1. The neighborhood structure

There are various neighborhood structures like star, ring, 
wheel and Von-Neumann (Engelbrecht, 2005) and Karimi, 
Pourtakdoust, and Nobahari (2011) have used a singly-
linked ring structure for the neighborhoods. In singly-
linked ring structure, as shown in Figure 1, a particle k has 
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Figure 1. Singly-linked ring structure
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two neighbors, particle k-2 and particle k+1. In turn, par-
ticles k-2 and k+1 have not particle k as one of their neigh-
bors. This topology keeps two neighbors for each particle, 
but breaks the mutual attraction between neighbors. In 
this way, the information is transmitted faster through the 
whole swarm than in the original ring topology.

2.2. Quadratic interpolation operator

 Inspired by the mathematical fact that each three points 
produce a quadratic curve which it may have a minimum 
value in its valley, a quadratic interpolation operator 
was introduced by (Karimi, Pourtakdoust, & Nobahari, 
2011). The quadratic interpolation operator utilizes the 
current experience of the intended particle, termed as 
main parent, and two other randomly chosen particles of 
the swarm. Subsequently, the fitness of the new particle 
is compared with the best experience of its main parent. 
The main parent’s best position will be replaced by the 
new particle, if it is better. Note that, in this strategy, the 
position of the parent is not changed and only its best 
position may be changed. According to the quadratic in-
terpolation, the position of the new particle, generated 
by particle j and two random particles nb1 and nb2, at 
t-th iteration and j-th dimension of the search space is 
calculated as:

2 0 for minimization
( , )
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a
b

new
if b

x t j
rand if b
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≤

; (20)
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where, xi(t,j), xnb1(t,j), xnb2(t,j) and xnew(t,j) indicate the 
j-th component of i-th, nb1, nb2 and new particle position 
vectors at t-th iteration, respectively.

3. Proposed heuristic estimation algorithms

As previously mentioned, most researches for APE are 
based on the conventional strategy namely EAM. The 
EAM is a single step estimation strategy, directly estimate 
aerodynamic parameters. The EBM algorithm first pro-
posed in (Mohammadi & Massoumnia, 2000) for APE in 
a two-step estimation strategy. In the 1st step the aero-
dynamic forces and moments are estimated, then after 
passing through a designed smoothing filter, in 2nd step 
aerodynamic parameters are estimated. In current re-
search, the modified PSO algorithm, previously described, 
is combined with both EAM and EBM strategies, and new 
algorithms are developed.

3.1. EAM-PSO algorithm

In practice, the proposed EAM-PSO algorithm requires in-
ertial navigation system measurement data including lin-
ear accelerations and angular rates in rolling body frame, 

[ , , , , , ]m xm ym zm m m ma a a p q r=y , and control surface de-
flection angle for estimating control surface contribution 
in aerodynamic forces and moments. Therefore, in this re-
search, after preparing the measurement data from 6DOF 
simulation model explained in section 4, an optimization 
problem is formed. The objective of this problem is to 
match measured values of [ , , , , , ]m xm ym zm m m ma a a p q r=y
with their estimated values [ , , , , , ]x y za a a p q r=y 

     , during 
the intended interval time, i = 1 … N, i.e.:
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By defining estimation state vector as [ , , , , , , , , ]u v w p q r= φ θ ψStateX  



      

[ , , , , , , , , ]u v w p q r= φ θ ψStateX  



     , and estimated aerody namic para meters 

vector as 0[ , , , , , , , , ]x z z zq l lp m m mqC C C C C C C C Cα δ α δ=AeroX          , 
rolling airframe equations of motion, Eq. (2)–Eq. (10), can 
be stated in the following form:

( , )f=state
state Aero

dX
X X

dt



  . (24)

As can be seen, here, the estimation model is stated 
as a function of estimated aerodynamic coefficients. The 
estimated accelerations are calculated as:

( ) /X X Ta QC F m= +

 ; (25)

/Y Ya QC m= 

 ; (26)

/Z Za QC m= 

 . (27)

The EAM-PSO algorithm flow chart and pseudo code 
are shown in Figure 2 and Table 1, respectively. Accord-
ing to this algorithm, in initialization step, AeroX is ran-
domly selected and the estimation model of Eq. (24) is 
numerically integrated by 4th order Runge Kutta method 
(Tan et  al., 2012) and the estimated data vector is cal-
culated. Note that numerical integration must be done 
each time that the objective function JEAM is calculat-
ed. This makes EAM-PSO to an algorithm having high 
computational time. During each iteration of estimation 
process, velocity and position vectors are updated. Af-
ter that, particles personal and local best positions are 
calculated. Stopping criterion is set to be a predefined 
number of iterations.

3.2. EBM-PSO algorithm

In EBM-PSO, in addition to INS, an extra accelerometer 
set is also needed. The first accelerometers set is fixed at 
the position [Rx1, 0, 0]T from the C.G, and supplies the 
measured data 1 1 1, ,xm ym zma a a , and the second acceler-
ometers set is fixed at the position [Rx2, Ry2, Rz2]T from 
the C.G, and supply the measured data 2 2 2, ,xm ym zma a a . 
Where, Rx1, Rx2, Ry2, and Rz2 are non-zero values. Because 
two accelerometers sets are mounted at locations differ-
ent from C.G, the rotational motion about C.G results in 
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Figure 2. EAM-PSO algorithm flow chart

Table 1. EAM-PSO Algorithm Pseudo code

Load Measured Data Vector [ , , , , , ]m xm ym zm m m ma a a p q r=y
Set Parameters Np, Niter, c1, c2, w and Vmax

Initialization

Initialize particles position 1
i, jX  and velocity 1

i, jV

Calculate Objective Function of initialized particles 1( )EAM iJ X  based on Eq. (23)

Estimation Process
For k = 2:Niter

 For I = 1:Np
 Find Neighbors & Set local best position according to singly-link ring social structure (section 3.1)

 Update particles positions k
i, jX  and velocities k

i, jV  according to Eq. (17) and Eq. (18)
 Apply velocity clamp Vmax , Eq.(19)

 Objective Function ( )kEAM iJ X calculation

 Set local best position k
iXbest

 Quadratic interpolation operator

Generate two random particles nb1 and nb2

Calculate the new particle position k
newX  Eq. (20)

Find Objective Function of new particle ( )k
EAM newJ X

If ( ) ( )
i

k k
EAM new EAM bestJ X J X<

1k k
i newXbest X+ =

End
End
Find global best particle

 End
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tangential and centripetal accelerations being picked. For 
example, when accelerometer is located at a distance RB = 
[Rx Ry Rz]T from C.G, the accelerometers set measurement 
(Klein & Morelli, 2006) is:

2 2

2 2

2 2

1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x AX T
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AZz
dqdr

dt dt x
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Rpr qr p q
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  + − + −   
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. (28)

Substituting dp
dt

, dq
dt

 and dr
dt

 from Eq. (5)–Eq. (7) 

into Eq. (28) for both accelerometers yields (Larsson, 
2013):
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(29)
Or in compact form:

= ⋅ +              ma A FM B . (30)

Two steps of EBM-PSO are described in next sub-
sections.

3.2.1. EBM-PSO First Step
In first step of EBM-PSO, the aerodynamic forces and 
moments [ , , , , , ]AX AY AZ X Y ZF F F M M M=FM  should be 
estimated using Eq. (29). But the problem is that matrix 
A is not a full rank matrix (rank of A≠6). Rolling airframe 
symmetry characteristics causes this problem. Hence, by 

adding the relation of second row with that of fifth row, a 
new set of full rank equations will be found:
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(31)
where,

1 2Ym Ym Yma a a= +  and 1 22 x x

z

R R
YZ AY Zm IFM F M+= + .

Assuming all measurement data to be known and solving 
Eq. (31), aerodynamic forces and moments , ,AX AZ XF F M  
and YM will be found for all time intervals. Measured 
data or directly calculated data including two accelerom-
eters outputs 1 1 1 2 2 2, , , , ,Xm Ym Zm Xm Ym Zma a a a a a , deflection 
angle mδ , velocity components , ,m m mu v w , angular rates 

, ,m m mp q r , Euler angles , ,m m mφ θ ψ , angle of attack mα  and 
side slip angle mβ . Therefore, the measurement vector is: 

1 1 1 2 2 2[ , , , , , , , , , , , , , , , , , ]Xm Ym Zm Xm Ym Zm m m m m m m m m m m m ma a a a a a p q r u v w= δ α β φ θ ψmZ

1 1 1 2 2 2[ , , , , , , , , , , , , , , , , , ]Xm Ym Zm Xm Ym Zm m m m m m m m m m m m ma a a a a a p q r u v w= δ α β φ θ ψmZ .

3.2.2. EBM-PSO smoothing step

The aerodynamic forces and moments calculated in first 
step are smoothed using Savitzky-Golay filter (Nirmal 
et  al., 2016). In this filter a set of integers (A-n, A-(n-1), 
…, An-1, An) are weighting coefficients to carry out the 
smoothing operation. The use of these weighting coef-
ficients, known as convolution integers, turns out to be 
exactly equivalent to fitting the data to a polynomial, and 
it is computationally more effective and much faster. The 
smoothed data point by the Savitzky-Golay algorithm is 
given by the following equation:

1( )
n

i ki n
k s n

ii n

A y
y

A

+=−

=−

=
∑
∑

, (32)

where, for a filter width (2n + 1) = 7 weighing coefficients 
are as follows:
A–3 = –2, A-2 = 3, A-1 = 6, A0 = 7, A1 = 6, A2 = 3, A3 = –2.
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3.2.3. EBM-PSO second step
In second step, the aerodynamic parameters are estimated 
by forming an optimization problem. Smoothed forces 
and moments vector [ , , , ]AX AZ X YF F M M=my  will be 
used in this step. Defining [ , , , ]AX AZ X YF F M M=y    

  as 
estimated aerodynamic forces and moments vector and 

0[ , , , , , , , , ]x z z zq l lp m m mqC C C C C C C C Cα δ α δ=AeroX           as aero-
dynamic parameters to be estimated (or optimization de-
sign variable), the estimation model can be summarized 
in the following vector form:

, ( , )f  = A Aero mF M X Z   . (33)

Estimated DataF&M Modeling

Savitzky-Golay

Smoothing

Measurement 

Data

Forces and Moments

Estimation
1st Step

Objective Function2nd Step

Estimated Aerodynamic

Parameters

The objective of this problem is to match calculated 
forces and moments with their estimated values, during 
the intended interval time, i = 1 … N, i.e.:

2 2

2 2
1

1
AX AX AZ AZ

AX AZ

X X Y Y

X Y

F F F F
N F F

EBM
M M M Mi

M M
i

J
N

− −

− −=

    + +    
    =
    +    
    

∑
 

 

. (34)

Solving the optimization problem, all nine aerodynam-
ic parameters AeroX  can be estimated. The EBM-PSO op-
timization algorithm showed in Figure 3. The pseudo code 
is also presented in Table 2. Noting that in first step FA and 

Figure 3. EBM-PSO algorithm

Table 2. EBM-PSO Algorithm Pseudo code

Load Measured Data Vector 1 1 1 2 2 2[ , , , , , ]xm ym zm xm ym zma a a a a a=ma
Estimate Aerodynamic Forces & Moments: using Eq. (31)
Smooth Aerodynamic Forces & Moments by Savitzky-Golay Filter
Set al.orithm Parameters Np, Niter, c1, c2, w and Vmax
Initialization

Initialize particles position 1
i, jX  and velocity 1

i, jV
Calculate Objective Function of initialized particles 1( )EBM iJ X

Estimation Process
For k = 2:Niter

For I = 1:Np
 Find Neighbors & Set local best position according to singly-link ring social structure (section 3.1)
 Update particles positions k

i, jX  and velocities k
i, jV  according to Eq. (17) and Eq. (18)

 Apply velocity clamp Vmax , Eq.(19)

 Objective Function ( )kEBM iJ X calculation

 Set local best position k
iXbest

 Quadratic interpolation operator
Generate two random particles nb1 and nb2
Calculate the new particle position k

newX  Eq. (20)
Find Objective Function of new particle ( )k

EAM newJ X
If ( ) ( )

i
k k

EBM new EBM bestJ X J X<

1k k
i newXbest X+ =

End
End
Find global best particle

 End
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M are estimated before aerodynamic modeling in second 
step, so this strategy is named EBM. Advantage of EBM-
PSO algorithm is that numerical integration is removed in 
it, and this provides a low computational run time.

3.3. SEBM-PSO algorithm

In separated EBM-PSO or SEBM-PSO algorithm, the es-
timation model of Eq. (33) is separated into the following 
set of equations:

1( , )AX x xF f C QSC= =mZ  ; (35)

2( , , , )

( )
2

AZ z z zq m

z m z m zq m
T

F f C C C Z
DQS C C C q
V

α δ

α δ

= =

α + δ +

  

  

; (36)

3 0

0

( , , )

2

X l lp

l lp m
T

M f C C
DQSD(C C p )
V

= =

+

mZ 

 

; (37)

4 ( , , , )

( )
2

Y m m mq

m m m m mq m
T

M f C C C
DQSD C C C q
V

α δ

α δ

= =

α + δ +

mZ  

  

. (38)

Considering the above set of equations, the nine aero-
dynamic coefficients can be estimated by solving the fol-
lowing four separate optimization problems:

First is an optimization problem with one-dimensional 
design vector [ ]xC , and its objective function is formu-
lated as:

2

1

1 N
AX AX

SEBM
AXi

i

F F
JX

N F=

  − =      
∑



. (39)

Second optimization problem has three design vari-
ables [ , , ]z z zqC C Cα δ

   , with the objective function:

2

1

1 N
AZ AZ

SEBM
AZi

i

F F
JZ

N F=

  − =      
∑



. (40)

Third, has a two dimensional design vector 0[ , ]l lpC C  , 
with the objective function:

2

1

1 N
X X

SEBM
Xi

i

M M
Jl

N M=

  − =      
∑



. (41)

And finally, fourth problem has a three dimensional 
design vector [ , , ]m m mqC C Cα δ

   , having the objective func-
tion:

2

1

1 N
Y Y

SEBM
Yi

i

M M
Jm

N M=

  − =      
∑



. (42)

SEBM-PSO is similar to EBM-PSO, but instead of one 
optimization problem, four separated optimization prob-
lems are formed.

4. Simulation results

A 6DOF simulation model, based on 6DOF equations 
of motion in Eq. (2)–Eq. (7), is built for generating the 
needed flight test data. In this model, thrust, mass, inertia 
and vehicle’s dimensions are obtained from experimental 
tests, and the aerodynamic model is obtained from CFD 
and Missile DATCOM softwares.

As stated before, the control actuation system is a 
one pair ON-OFF. Therefore, an actuation signal δ(t)  = 
sin(2pt) + Asin(pt+φ) is applied to the vehicle. Where, 
Asin(pt+φ) is input signal and sin(2pt) is the linearization 
signal (Nobahari & Mohammad Karimi, 2011).

The model  outputs  are:  accelerat ions
1 1 1 2 2 2, , , , ,Xm Ym Zm Xm Ym Zma a a a a a , deflection angle mδ , 

velocity components in body frame , ,m m mu v w , angular 
rates , ,m m mp q r , Euler angles , ,m m mϕ θ ψ , angle of attack 

mα  and side slip angle mβ . These outputs are used as 
measurement data in the estimation process.

Because of noisy nature of test sensore, in order to 
simulating real sensor outputs, a rational noise is also add-
ed to simulated data. Therefore, here, a uniformly distrib-
uted random noise is added to the original signal (sigm), 
obtained from simulation (Tieying, Jie, & Kewei, 2015);

(1 (2 1))m mSig Sig rand= + ξ − , (43)
where, ξ determines noise to signal ratio, and rand 

stand for a uniformly distributed real number between 
[0, 1]. The noise effects are added according to Eq. (43), 
and adding noise to the data obtained from simulation 
will make the simulation data more close and equivalent 
to the real experimental data. Noise effect is considered 
by setting ξ = 0.05 for acceleration and angular rate data.

Sampling rate of measurement signal is set to be 
500 Hz, and the simulation data are saved during interval 
time 5–6 seconds from flight regime. The selected flight 
regime is a high speed regime with limited Mach number 
variations (1.68–1.7 Mach). So, the aerodynamic coeffi-
cients are supposed to be constant. As we know, in high 
Reynolds numbers the viscosity effect are small. In other 
words, during this nearly constant speed flight condition, 
effect of aerodynamic phenomenon like viscosity, Mach 
numbers and Reynolds number are negligible.

As the current research is focused on the estimation 
algorithms, using this model will not affect the efficiency 
of the proposed methods. Even it can be used as a bench-
mark to validate the proposed algorithms. At last, simula-
tion outputs is saved and used as the measurement data. 
All routines run on a PC with a 2.0 GHZ CPU and 4.0 GB 
of RAM.

4.1. APE with EAM-PSO

Estimation model of Eq. (23) is used in EAM-PSO. Figure 
4 shows the EAM-PSO objective function convergence be-
havior during 100 iterations, for a single run.
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Table 3. EAM-PSO Simulation Results for a single run

Parameter Nom. Value Estimated Value Error %

Cx –0.98 –0.89 9.3%
Czα –11.8 –11.5 2.5%
Czδ –1.27 –1.15 9%
Czq –172 –174 1.3%
Cl0 0.041 0.042 1.9%
Clp –5.13 –5.07 1.2%

Cmα –33.8 –36.0 6.7%
Cmδ –20.9 –19.7 5.5%
Cmq –2227 –2427 9%

Average (error %) 5.1%

4.2. APE with EBM-PSO and SEBM-PSO

Eq. (28) is used as the estimation model for EBM-PSO. 
The data used for EAM-PSO in addition to the data of 
extra accelerator are uses as input data for EBM-PSO. The 
position error of accelerometers Rx , Ry , Rz is also taken 
into account by setting ξ =  0.1 in Eq. (43). In first step 
of the EBM-PSO method, by solving linear set equation 
of Eq. (31) for , ,AX AZ XF F M  and ZM , the aerodynamic 
forces and moments are calculated. The obtained time var-
ying parameters are considered as measured values. Then, 
these measured values are passed through a smoothing 
Savitzky-Golay filter according to Eq. (32) in section 3.2.2. 
These measured values and their corresponding smoothed 
values, are drawn in Figure 9−12.
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Figure 4. EAM-PSO objective function variations with 
iterations

Figure 5. Estimation of Cx by EAM-PSO algorithm

Figure 6. Estimation of Czq by EAM-PSO algorithm

Estimated values for Cx, Czq, Clp and Cmα during itera-
tions of algorithm in comparison to their nominal values 
are shown in Figure 5–8. Nominal values are those values 
previously obtained from CFD or Missile Datcom soft-
ware for aerodynamic coefficients.

Table 3 summarizes the EAM-PSO results. It shows 
that the average value of estimation error is about 5.1%. 
The best estimated coefficient is Clp with 1.2% error, and 
the worst is Cx with 9.3% error. On average, each run 
of EAM-PSO with 100 iterations takes 92 minutes run 
time.
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Figure 8. Estimation of Cmα by EAM-PSO algorithm
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As can be seen, applying smoothing filter has deleted high 
frequency noises. Then second step of EBM-PSO have been 
done for both EBM-PSO and SEBM-PSO. The estimated and 
nominal values of aerodynamic coefficients Cx, Czq, Clp and 
Cmα, for a single run, are compared in Figure 13 to Figure 16.
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Figure 9. First step results of EBM-PSO: FAX and  
its smoothed values

Figure 10. First step results of EBM-PSO: FAZ and  
its smoothed values

Figure 11. First step results of EBM-PSO: MX and  
its smoothed values

Figure 12. First step results of EBM-PSO: MY and  
its smoothed values
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Figure 14. Estimation of Czq by EBM-PSO and 
 SEBM-PSO algorithms
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Summarized results of a single run are presented in 
Table 4. For EBM-PSO, the average value of estimation er-
ror is 2.4%, the best estimation result is for Clp with 0.5%, 
and the worst result is the estimation of Czα with 4.6% 
error. SEBM-PSO results shows that the average value of 
estimation error is 2.2%, the best estimation is for Cl0 with 
0.2% error, and the worst result is the estimation of Cmq 
with 5.5% error. As shown, SEBM-PSO gives more accu-
rate results than EBM-PSO because of solving separated 
optimization problems.

Table 4. EBM-PSO simulation results

Algorithm EBM-PSO SEBM-PSO

Parameter Nom. Value Est. V. (err%) Est. V. (err%)

Cx –0.98 –1.0 (2.8%) –0.99 (1.8%)

Czα –11.8 –11.3 (4.6%) –11.3 (4.1%)

Czδ –1.27 –1.29 (1.7%) –1.29 (1.4%)

Czq –172 –166 (3.2%) –165 (4.0%)

Cl0 0.041 0.042 (1.8%) 0.041 (0.2%)

Clp –5.13 –5.1 (0.5%) –5.0 (2.5%)

Cmα –33.8 –35.0 (3.5%) –33.6 (0.5%)

Cmδ –20.9 –20.3 (2.8%) –20.9 (0.14%)

Cmq –2227 –2202 (1.1%) –2350 (5.5%)

Average (error %) 2.4% 2.2%

4.3. Performance evaluation

In this section, the accuracy of the proposed algorithms is 
evaluated via comparing the estimated values with previ-
ously known values. These known values have been calcu-
lated CFD and Missile Datcom simulations, here are called 
nominal values. In other words, aerodynamic model ob-
tained from CFD and Missile Datcom softwares are used 
as a reference to determine the efficiency of the estimated 
methods.

Here, in addition to three newly developed algorithms, 
an EKF algorithm is also implemented for the problem at 
hand. The EKF state vector is X = [u, v, w, p, q, r, φ, θ, ψ], 
its unknown parameters vector to be estimated is Θ= 
[Cx,Czα,Czδ,Czq, Cl0,Clp, Cmα,Cmδ,Cmq] and measurement 
vector is Y=[aX1, aY1, aZ1, aX2, aY2, aZ2, p , q , r]. The results 
of these four algorithms, for 100 successive runs, are com-
pared and referred to nominal values calculated by CFD 
and Missile Datcom simulations and proposed in Table 7. It 
can be seen that the most accurate estimations are obtained 
by SEBM-PSO. The average estimation error for SEBM-
PSO is 2.2%, for EBM-PSO is 2.4%, for EAM-PSO is 5.1% 
and for EKF is 8.4%. Three proposed algorithms give better 
estimations rather than EKF. However EKF gives a better 
estimation for Clp. In term of run time, EKF has the best 
performance with average 180 seconds. After that, EBM-
PSO and SEBM-PSO have a comparable computational run 
time, while EAM-PSO has a high run time (92 min). Both 
EBM-PSO and SEBM-PSO algorithms have considerably 
better run-time in comparison with EBM-PSO, because the 

Table 5. Estimated parameters for EAM-PSO, EBM-PSO, SEBM-PSO and EKF

Algorithm EAM-PSO EBM-PSO SEBM-PSO EKF

Dimension 9D 9D 1D+3D+2D+3D 9D
Particle Number 450 450 50+150+100+150
Iteration Number 200 200 200

Run Number 100 100 100 100
Average Time 92 min 288 Sec 258 Sec 180 Sec

Parameter Nom. Value Est. V. (err%) Est. V. (err%) Est. V. (err%) Est. V. (err%)
Cx –0.98 –0.89 (9.3%) –1.0 (2.8%) –0.99 (1.8%) –1.13 (15%)
Czα –11.8 –11.5 (2.5%) –11.3 (4.6%) –11.3 (4.1%) –12.8 (8.8%)
Czδ –1.27 –1.15 (9%) –1.29 (1.7%) –1.29 (1.4%) –1.1 (11%)
Czq –172 –174 (1.3%) –166 (3.2%) –165 (4.0%) –155 (9%)
Cl0 0.041 0.042 (1.9%) 0.042 (1.8%) 0.041 (0.2%) 0.043 (5%)
Clp –5.13 –5.07 (1.2%) –5.1 (0.5%) –5.0 (2.5%) –5.13 (0.03%)

Cmα –33.8 –36.0 (6.7%) –35.0 (3.5%) –33.6 (0.5%) –34.0 (0.7%)
Cmδ –20.9 –19.7 (5.5%) –20.3 (2.8%) –20.9 (0.14%) –23.8 (14%)
Cmq –2227 –2427 (9%) –2202 (1.1%) –2350 (5.5%) –2494 (12%)
Average (error %) 5.1% 2.4% 2.2% 8.4%
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numerical integration process is deleted in EBM strategy. 
Best value for each aerodynamic parameter is highlighted in 
Table 5. SEBM-PSO gives best accuracy for Cx,Czα, Czδ, Cl0, 
Cmα and Cmδ.The best value for Czq is given by EAM-PSO. 
The best estimation for Cmq is given by EBM-PSO. The best 
estimation error for Clp is obtained by EKF algorithm.

4.4. Measurement noise effect on EBM-PSO 
performance

The noise amplitude effect on EBM-PSO performance 
is studied here by performing 100 successive runs with 
three different noise magnitudes. The results are shown in 
Table 6. As was expected, increasing the noise amplitude 
causes the estimation accuracy to decreases.

In another simulation, the effect of noise magnitude when 
smoothing filter is deleted from EBM-PSO is evaluated. The 
average values of estimated aerodynamic coefficients result-
ed by 100 successive runs are presented in Table 7. By com-
paring results of Table 6 it can be seen that Savitzky-Golay 
smoothing filter help the algorithm to decrease noise effects. 
For example when ξ = 0.05, using smoothing filter enhances 
the average estimated error from 6.2% to 3.5%.

Conclusions

In this article, based on a modified version of particle 
swarm optimization algorithm, three heuristic estimation 
algorithms are proposed to perform aerodynamic param-
eter estimation of a typical rolling airframe. It is shown that 
EBM-PSO uses an extra accelerometer in practice and the 
measurement unit needs to be fixed far from C.G. position. 
It was shown that EBM-PSO is more rapid in run time due 
to canceling the time consuming numerical integration pro-
cedure which is needed in EAM-PSO algorithms. SEBM-
PSO algorithm provides more exact results by separating 
the estimation problem to a set of low-dimensional opti-
mization problems. All aerodynamic coefficients may be 
estimated by proposed algorithms at once. Comparing the 
proposed algorithms performance with that of EKF shows 
its more exact results, while having comparable run time 
in EBM-PSO and SEBM-PSO algorithms. The evaluation 
studies show that aerodynamic parameter estimation ac-
curacy is affected by measurement noise, and applying of 
Savitzky-Golay smoothing filter is very useful for eliminat-
ing the noise effect and enhancing the estimation accuracy. 
The simulation results revealed that the proposed methods 

Table 6. Estimated parameters with different noise magnitude using EBM-PSO with smoothing filter

Parameter Nominal Value
ξ = 0.02 ξ = 0.05 ξ = 0.1

Est. V. (err %) Est. V. (err %) Est. V. (err %)

Cx –0.98 –0.99 (1%) –0.995 (1.5%) –1.02 (3.9%)
Czα –11.8 –11.3 (4.4%) –11.1 (6.3%) –10.9 (8.3%)
Czδ –1.27 –1.25 (1.6%) –1.32 (3.8%) –1.35 (5.9%)
Czq –172 –164 (4.9%) –163 (5.5%) –184 (6.5%)
Cl0 0.041 0.041 (0.1%) 0.040 (2.5%) 0.040 (2.5%)
Clp –5.13 –5.02 (2.2%) –4.89 (4.9%) –5.38 (4.6%)

Cmα –33.8 –34.3 (1.5%) –35.2 (4%) –36.9 (8.4%)
Cmδ –20.9 –20.7 (1%) –20.6 (1.5%) –19.6 (6.6%)
Cmq –2227 –2241 (0.6%) –2190 (1.7%) –2070 (7.5%)

Average (error %) 1.9% 3.5% 6%

Table 7. Estimated parameters with different noise magnitude using EBM-PSO without smoothing filter

Parameter Nominal Value
ξ = 0.02 ξ = 0.05 ξ = 0.1

Est. V. (err %) Est. V. (err %) Est. V. (err %)

Cx –0.98 –0.99 (1%) –0.995 (1.5%) –1.03 (4.9%)
Czα –11.8 –11.6 (2.6%) –10.6 (11.3%) –10.5 (12.4%)
Czδ –1.27 –1.24 (2.4%) –1.37 (7.3%) –1.43 (11.2%)
Czq –172 –169 (4.2%) –163 (5.5%) –186 (7.5%)
Cl0 0.041 0.040 (2.4%) 0.042 (2.4%) 0.043 (4.7%)
Clp –5.13 –4.91 (4.7%) –5.39 (5.2%) –5.46 (6%)

Cmα –33.8 –33.4 (1.5%) –37.3 (9.4%) –37.8 (10.6%)
Cmδ –20.9 –20.4 (3.4%) –19.3 (8.3%) –18.9 (10.6%)
Cmq –2227 –2146 (3.8%) –2129 (4.6%) –2103 (5.9%)

Average (error %) 2.9% 6.2% 8.2%



32 A. Mohamad et al. New heuristic algorithms for rolling air frame aerodynamic parameters estimation

can be used in practical applications. The performed work
may be extended to involve heuristic real-time estimation
algorithms that consider aerodynamic coefficients varia-
tions with flight parameters like Mach number.
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Abbreviations

6DOF – Six Degree Of Freedom;
ANN – Artificial Neural Network;
APE – Aerodynamic Parameters Estimation;
C.G. – Center of Gravity;
CFD – Computational Fluid Dynamic;
EAM – Estimation After Modeling;
EBM – Estimation Before Modeling;
EKF – Extended Kalman Filter;
IBSS – Iterative Bi-Section Shooting;
INS – Inertial Navigation System;
KF – Kalman Filter;
PSO – Particle Swarm Optimization;
RA –Rolling Airframe;
SEBM – Separated Estimation Before Modeling;
UAV – Unmanned Aerial Vehicle;
UKF – Unscented Kalman Filter.
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